• Title/Summary/Keyword: Mel-cepstrum

검색결과 65건 처리시간 0.028초

K-L 전개를 이용한 연속 숫자음 인식에 관한 연구 (A Study on Connected Digits Recognition Using the K-L Expansion)

  • 김주곤;오세진;황철준;김범국;정현열
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.24-31
    • /
    • 2001
  • K-L 전개 방법은 특징의 차원을 효과적으로 압축하므로 인식 처리에서 계산량을 줄일 수 있는 방법으로 잘 알려져 있다. 본 논문에서는 한국어 인식 시스템의 인식 정도를 개선하기 위해, 음성의 특징 파라미터에 대하여 효과적으로 K-L전개를 적용하는 방법(K-L 계수)을 제안한다. 그리고 제안한 방법으로 얻어진 새로운 음성 특징 파라미터를 이용하여 화자 독립 연속 숫자음 인식실험을 수행하고, 기존의 Mel-cepstrum과 회귀계수의 인식 결과와 비 교, 분석하였다. 인식 실험 결과, 제안한 K-L 계수를 이용한 방법이 기존의 방법보다 높은 인식률을 얻어 제안한 방법의 유효성을 확인할 수 있었다.

  • PDF

Speech Emotion Recognition Using 2D-CNN with Mel-Frequency Cepstrum Coefficients

  • Eom, Youngsik;Bang, Junseong
    • Journal of information and communication convergence engineering
    • /
    • 제19권3호
    • /
    • pp.148-154
    • /
    • 2021
  • With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.

음성인식을 위한 웨이블릿 필터 평가 (Wavelet Filter Evaluation for Speech Recognition System)

  • 김기대;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.127-130
    • /
    • 2000
  • In this paper, we explore the possibility to use wavelet decomposition based on modified octave structured 5-level filter banks as a set of features for speech recognition. The HMM (Hidden Markov Model) is used as a recognizer 〔l〕. We compared the performance of the wavelet decomposition with the mel-cepstrum and LPC cepstrum. Experimental results show favorable results.

  • PDF

실험에 의한 음성·음악 분류 특징의 비교 분석 (Comparison & Analysis of Speech/Music Discrimination Features through Experiments)

  • 이경록;류시우;곽재영
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2004년도 추계 종합학술대회 논문집
    • /
    • pp.308-313
    • /
    • 2004
  • 본 논문에서는 각 특징 파라미터 조합의 음성/음악 분류 성능을 비교 분석하였다. 음향신호는 3가지(음성, 음악, 음성+음악)로 분류하였다. 본 실험에서는 분류 특징으로 멜캡스트럼, 에너지, 영교차 3가지 형태가 사용되었다. 음성/음악 분류 성능이 가장 좋은 특징간의 상호 조합을 비교 분석하였다. 실험결과 멜캡스트럼, 영교차 조합이 가장 좋은 결과(음성: 95.1%, 음악: 61.9%, 음성+음악: 55.5%)를 보인다는 것을 확인할 수 있었다.

  • PDF

잡음 환경에서의 유도 전동기 고장 검출 및 분류를 위한 강인한 특징 벡터 추출에 관한 연구 (A Study on Robust Feature Vector Extraction for Fault Detection and Classification of Induction Motor in Noise Circumstance)

  • 황철희;강명수;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권12호
    • /
    • pp.187-196
    • /
    • 2011
  • 유도 전동기는 항공 산업, 자동차 산업 등의 산업 현장에서 중요한 역할을 하고 있으며, 이러한 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이에 본 논문에서는 정상 및 각종 비정상 상태의 유도 전동기 진동 신호에 대해 부분 자기 상관(partial autocorrelation, PARCOR) 계수, 로그 스펙트럼 파워(log spectrum powers, LSP), 캡스트럼 계수의 평균값(cepstrum coefficients mean, CCM), 멜 주파수 캡스트럼 계수(mel-frequency cepstrum coefficient, MFCC)의 네 가지 특징 벡터를 신경 회로망의 입력으로 사용하여 유도 전동기의 고장을 검출하고 분류하였다. 고장 분류를 위한 최적의 특징 벡터를 찾기 위해 추출하는 특징의 수를 2에서 20으로 바꾸어 가며 분류 성능을 평가한 결과 CCM을 제외한 나머지의 경우 5~6의 특징만으로 분류 정확도가 거의 100%에 가까운 결과를 보였다. 또한 본 논문에서는 실제 산업 현장에서 진동 신호 취득 시 포함될 수 있는 잡음을 고려하여 취득한 신호에 백색 잡음(white Gaussian noise)을 인위적으로 추가하여 실험한 결과 LSP, PARCOR, MFCC 순으로 잡음 환경에 강인한 특징 벡터임을 확인할 수 있었다.

잡음에 강한 특징 벡터 및 스펙트럼 차감법을 이용한 음성 인식 (Speech Recognition Using Noise Robust Features and Spectral Subtraction)

  • 신원호;양태영;김원구;윤대희;서영주
    • 한국음향학회지
    • /
    • 제15권5호
    • /
    • pp.38-43
    • /
    • 1996
  • 본 논문에서는 잡음 및 주변 환경에 강인한 것으로 알려져 있는 특징 벡터들을 이용한 인식 성능을 비교하였다. 아울러 스펙트럼 차감법을 적용하여 높은 인식 성능을 얻도록 하였다. 본 논문에서는 환경 변화에 강인한 인식 성능을 얻기 위하여 SMC(Short time Modified Coherence) 분석, 루트(root) 켑스트럼 분석, LDA(Linear Discriminant Analysis), PLP(Perceptual Linear Prediction), RASTA(RelAtive SpecTrAl) 처리 등을 이용하여 인식 실험을 수행하였다. 실험을 위하여 반연속 HMM을 이용한 단독음 인식 시스템을 구현하였고 전시장 및 컴퓨터실의 잡음을 첨가하여 0, 10 및 20dB의 SNR에 대한 인식 실험을 수행하였다. 실험 결과, LPCC(Linear Prediction Cepstral Coefficient)를 이용한 경우에 비하여 SMC나 루트처리를 이용한 멜 켑스트럼(루트_멜 켑스트럼)을 이용한 경우 10dB의 SNR에서 각각 9.86%, 12.68% 향상된 가장 좋은 인식률을 얻었다. 또한 멜 켑스트럼과 루트_멜 켑스트럼을 스펙트럼 차감법과 결합하여 잡음을 제거한 경우 10dB에서 각각 16.7%, 8.4% 향상된 94.91%, 94.28%의 인식률을 얻을 수 있었다.

  • PDF

Analysis of Speech Signals Depending on the Microphone and Micorphone Distance

  • Son, Jong-Mok
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권4E호
    • /
    • pp.41-47
    • /
    • 1998
  • Microphone is the first link in the speech recognition system. Depending on its type and mounting position, the microphone can significantly distort the spectrum and affect the performance of the speech recognition system. In this paper, characteristics of the speech signal for different microphones and microphone distances are investigated both in time and frequency domains. In the time domain analysis, the average signal-to-noise ration is measure ration is measured for the database we collected depending on the microphones and microphone distances. Mel-frequency spectral coefficients and mel-frequency cepstrum are computed to examine the spectral characteristics. Analysis results are discussed with our findings, and the result of recognition experiments is given.

  • PDF

Automatic Detection of Cow's Oestrus in Audio Surveillance System

  • Chung, Y.;Lee, J.;Oh, S.;Park, D.;Chang, H.H.;Kim, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권7호
    • /
    • pp.1030-1037
    • /
    • 2013
  • Early detection of anomalies is an important issue in the management of group-housed livestock. In particular, failure to detect oestrus in a timely and accurate way can become a limiting factor in achieving efficient reproductive performance. Although a rich variety of methods has been introduced for the detection of oestrus, a more accurate and practical method is still required. In this paper, we propose an efficient data mining solution for the detection of oestrus, using the sound data of Korean native cows (Bos taurus coreanea). In this method, we extracted the mel frequency cepstrum coefficients from sound data with a feature dimension reduction, and use the support vector data description as an early anomaly detector. Our experimental results show that this method can be used to detect oestrus both economically (even a cheap microphone) and accurately (over 94% accuracy), either as a standalone solution or to complement known methods.

독립성분분석법을 이용한 음성인식기의 성능향상 (Performance Improvement of Speech Recognition Based on Independent Component Analysis)

  • 김창근;한학용;허강인
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.285-288
    • /
    • 2001
  • 본 논문에서는 신호간의 의존성과 관련성이 최소가 되도록 분리하는 독립성분분석 법을 이용하여 입력음성에서 변동량이 많은 방향으로 주축을 찾아 그 정보를 이용하여 데이터의 중복성을 제거한 후 음성특징벡터를 추출하는 방법을 제안한다. 학습 하고자하는 음성인식기의 음성에서 독립성분분석법을 이용하여 특징벡터를 추출하고 HMM 을 사용하여 기존의 음성특징벡터로 사용되는 mel-cepstrum과 비교하여 학습, 인식실험을 수행하였으며 제안한 방법에서 음성인식성능의 향상을 확인할 수 있었다. 또한, 인식시 주변여건에 따라 잡음에 의한 인식성능 저하에도 유연히 대처할 수 있음을 앞 수 있었다.

  • PDF

화자 인식을 통한 등장인물 기반의 비디오 요약 (Character-Based Video Summarization Using Speaker Identification)

  • 이순탁;김종성;강찬미;백중환
    • 융합신호처리학회논문지
    • /
    • 제6권4호
    • /
    • pp.163-168
    • /
    • 2005
  • 본 논문에서는 인물 기반의 비디오 요약 방법으로써 비디오 내 음성정보를 이용하여 화자 인식 기법을 통한 등장인물 중심의 요약 기법을 제안한다. 먼저, 얼굴 영역을 포함하는 장면을 중심으로 비디오로부터 배우의 대사에 해당하는 음성 정보를 분리하고, 화자 인식 기법을 수행하여 등장인물 별로 분류하였다. 화자인식 기법은 각 화자별로 MFCC(Mel Frequency Cepstrum Coefficient) 값을 추출하고 GMM(Gaussian Mixture Model)을 이용하여 분류한다. 본 논문에서는 4명의 등장인물에 대해 GMM을 학습시키고 4명 중 1명을 검출하는 실험을 통해 학습된 GMM 분류기가 실험 비디오에 대해 0.138 정도의 오분류율을 보임을 확인하였다.

  • PDF