• Title/Summary/Keyword: Mega truss

Search Result 12, Processing Time 0.023 seconds

A Study on Construction Sequence Optimization and Structural Analysis in consideration of Structural Concept of Hanging Structure based on the Applied Case (적용사례 중심의 매달린 구조물의 구조적 특성을 고려한 시공순서 최적화 및 시공단계별 구조해석 연구)

  • Park, Yong-Hyeon;Kim, Jong-Soo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.147-156
    • /
    • 2019
  • The purpose of this study is to consider structural issues and analyze construction sequences when constructing hanging floors supported by Mega truss. Since suspended structures were supported by the Mega truss, vertical load on suspended structures was needed to transfer from low to high. Deflection management of structures was the primary point under construction. The results of this study were as follows; The steel structures, which has relatively lighter self-weight, were constructed upwards after the base floor steel truss erection. Concrete Placing, which has relatively heavier self-weight, were performed in two phases to minimize structure's deflection. Slab was placed downwards from the top floor to lower floor whereas column was places upwards. Deflection measurements were carried out at every construction sequences.

A Study on the Development of Mega Structure System (입체.복합 공간구조(Mega Structure) 시스템의 개발에 관한 연구)

  • Jung, You-Na;Lee, Hyun-Ju;Shin, Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.261-264
    • /
    • 2008
  • Recently, as necessity for urban recycling has increased, the research on integrated multi-purpose space has been required. Development of the system for integrated multi-purpose space is needed to form the efficient and higher value-added space. In this research, the notion of integrated multi-purpose space is defined and two proposed structural system, which are space truss and mega structure system, are compared. Mega structure system has been found as more proper system and proposed for analysis. As verified by the number of mega beam and shape of mega column, the analysis has been carried out. The results show that mega structure system offers proper performance for integrated multi-purpose space.

  • PDF

Design and Construction of GINZA KABUKIZA

  • Kawamura, Hiroshi;Ishibashi, Yoji;Morofushi, Tsutomu;Saragai, Yasuyuki;Inubushi, Akira;Yasutomi, Ayako;Fuse, Naohiko;Yoshifuku, Manabu;Saitoh, Kouji
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.233-241
    • /
    • 2016
  • This paper describes the structural solution for the design of a 29-story high-rise tower, which features a large office space above the Kabukiza Theatre. Kabuki is a type of Japanese traditional drama, and Kabukiza is the home building of Kabuki. GINZA KABUKIZA is the fifth generation of the Kabukiza Theatre, the first of which was built in 1889. In order to support 23 stories of office space above the theater - featuring a large void in plan - two 13-meter-deep mega-trusses, spanning 38.4 meters, are installed at the fifth floor of the building. Steelwork is used as a primary material for the structure above-ground, and a hybrid response control system using a buckling-restrained brace and oil damper is adopted in order to achieve a high seismic performance. This paper also describes the erection process of installing hydraulic jacks directly above the mega-truss at column bases, in order to keep the structure above the truss level during construction. The temple architecture of the previous Kabukiza is carefully restored by incorporating contemporary light-weight materials supported by steelwork.

Welcome the Challenges and Imaging the Sky Town

  • Cheng, Jiang Huan
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.271-277
    • /
    • 2017
  • Safety, livability, and efficiency are the three prominent problems of tall buildings, which are also the severe challenges to designers. We proposed the idea of building the sky town to solve these problems, which can be summarized in two sentences, one is tall building multi-storised, and another one is vertical facilities municipal-infrastructurised. The tall building can be horizontally cut into several multi-storey buildings by some large platforms. The platform extends a certain width to block the fire from spreading. Tall buildings are connected together as a group. One of them is a traffic core, which is used for vertical transportation and MEP. It connects to traffic center such as metro, while most of the other tall buildings' cores can be very much released, so as to achieve maximum efficiency of floor usable area and to give good traffic organization. By combining traffic core, platforms, and multi-storey buildings' inner traffic, a transportation network is formed. Finally, we refer to the design of Raffles City Chongqing to make a sketch of sky town.

Structural Design of Nakanoshima Festival Tower

  • Okada, Ken;Yoshida, Satoshi
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.173-183
    • /
    • 2014
  • Nakanoshima Festival Tower is a 200 m high-rise complex building which contains a renewed 2700-seat capacity concert hall known as "Festival Hall" and offices including headquarter of a news company. In order to build up an office tower on the hall which requires large open space, a giant truss system is employed. The giant trusses being composed of mega-trusses and belt-trusses support all the building weight above them and transfer the load to the outside of the hall. The building also requires high seismic resistance performance for a news company. Application of mid-story seismic isolation enables the building to satisfy high-level seismic resistance criteria.

Shaking Table Test and Seismic Performance Evaluation of Shanghai Tower

  • Chunyu, Tian;Congzhen, Xiao;Hong, Zhang;Jinzhe, Cao
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.221-228
    • /
    • 2012
  • Shanghai Tower is a super high-rise building of 632 m height with 'mega frame-core- outrigger truss' structure system. Due to the complexity and irregularity of structure, shaking table test was carried out to investigate its seismic performance. A 1/40 scaled test model was designed, built and tested on shaking table under earthquake of small, moderate and large levels. The experimental results showed that the structure can meet the requirements of Chinese codes and reach scheduled performance objectives. Elastic and plastic time-history analysis on the structure were carried out and the results were compared to experimental results. Based on the research results some suggestions were proposed to contribute favorable effect on the seismic capacity of the structure.

Experimental and numerical investigations on seismic performance of a super tall steel tower

  • He, Minjuan;Li, Zheng;Ma, Renle;Liang, Feng
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.571-586
    • /
    • 2014
  • This paper presents experimental and numerical study on seismic performance of a super tall steel tower structure. The steel tower, with a height of 388 meters, employs a steel space truss with spiral steel columns to serve as its main lateral load resisting system. Moreover, this space truss was surrounded by the spiral steel columns to form a steel mega system in order to support a 12-story platform building which is located from the height of 230 meters to 263 meters. A 1/40 scaled model for this tower structure was made and tested on shake table under a series of one- and two-dimensional earthquake excitations with gradually increasing acceleration amplitudes. The test model performed elastically up to the seismic excitations representing the earthquakes with a return period of 475 years, and the test model also survived with limited damages under the seismic excitations representing the earthquakes with a return period 2475 years. A finite element model for the prototype structure was further developed and verified. It was noted that the model predictions on dynamic properties and displacement responses agreed reasonably well with test results. The maximum inter-story drift of the tower structure was obtained, and the stress in the steel members was investigated. Results indicated that larger displacement responses were observed for the section from the height of 50 meters to 100 meters in the tower structure. For structural design, applicable measures should be adopted to increase the stiffness and ductility for this section in order to avoid excessive deformations, and to improve the serviceability of the prototype structure.