• 제목/요약/키워드: Medulla oblongata

검색결과 48건 처리시간 0.026초

한국재래산양 두부의 안면신경 분포에 관한 해부학적 연구 (Course and Distribution of Facial Nerve of the Korean Native Goat)

  • 이흥식;이인세;김대중
    • 대한수의학회지
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 1986
  • This study was carried out to investigate the branch and distribution of Nervus facialis of the Korean native goat. The observation was made by dissection of embalmed cadavers of ten Korean native goats. The results were as follows; 1. N. facialis arose from the ventrolateral surface of the medulla oblongata. 2. In the facial canal, N. facialis gave off N. petrosus major, N. stapedius and Chorda tympani. 1) N. petrosus major arose from Ganglion geniculi, passed through the pterygoid canal and terminated in Ganglion pterygopalatinum. 2) Chorda tympani joined N. lingualis at the lateral surface of the internal pterygoid muscle. 3. At the exit of the stylomastoid foramen, N. facialis gave off N. caudalis auricularis, Ramus auricularis internus, Ramus stylohyoideus and Ramus digastricus. 1) N. caudalis auricularis arose by two branches in 6 cases and by a single branch in 4 cases. N. caudalis auricularis gave off branches to the caudoauricuIar muscles and the internal surface of the conchal cavity. 2) Ramus auricularis internus arose by a single branch except in 2 cases in which it arose in common with N. caudalis auricularis. It penetrated the caudolateral surface of the tragus and distributed in the skin of the scapha. 3) Ramus stylohyoideus and Ramus digastricus arose separately from N. facialis. 4. In the deep surface of the parotid gland, N. facialis divided into N. auriculopalpebralis, Ramus buccalis dorsalis and Ramus buccalis ventralis. In 6 cases, N. facialis gave off Ramus buccalis ventralis and then divided into N. auriculopalpebralis and Ramus buccalis dorsalis. In 3 cases, N. facialis trifurcated into Ramus buccalis ventralis, Ramus buccalis dorsalis and N. auriculopalpebralis. In one case, N. facialis gave off N. auriculopalpebralis and then divided into Ramus buccalis dorsalis and Ramus buccalis ventralis. 1) Ramus buccalis ventralis ran along the ventral border of the masseter muscle and distributed to the buccinator and depressor labii inferioris muscles. Ramus buccalis ventralis communicated with a branch of Ramus buccalis dorsalis and N. buccalis. In 2 cases, it also communicated with N. mylohyoideus. 2) Ramus buccalis dorsalis communicated with Ramus transverses faciei, N. buccalis, N. infraorbitalis and a branch of Ramus buccalis ventralis. Ramus buccalis dorsalis distributed to the orbicularis oris, caninus, depressor labii inferioris, levator labii superioris, buccinator, malaris, nasolabialis and zygomaticus muscles. 3) N. auriculopalpebralis gave off Rami auriculares rostrales, which supplied the zygomaticoauricularis muscle, the frontoscutularis muscle and the skin of the base of the ear. N. auriculopalpebralis then continued as Ramus zygomaticus, which innervated the frontal muscle, the lateral surface of the base of the horn, the orbicularis oculi muscle and the adjacent skin of the orbit. N. auriculopalpebralis communicated with Nn. auriculares rostrales and Ramus zygomaticotemporalis. In 7 cases, it also communicated with N. infratrochlearis.

  • PDF

Gamma Knife Radiosurgery for Brainstem Metastasis

  • Yoo, Tae-Won;Park, Eun-Suk;Kwon, Do-Hoon;Kim, Chang-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제50권4호
    • /
    • pp.299-303
    • /
    • 2011
  • Objective : Brainstem metastases are rarely operable and generally unresponsive to conventional radiation therapy or chemotherapy. Recently, Gamma Knife Radiosurgery (GKRS) was used as feasible treatment option for brainstem metastasis. The present study evaluated our experience of brainstem metastasis which was treated with GKRS. Methods : Between November 1992 and June 2010, 32 patients (23 men and 9 women, mean age 56.1 years, range 39-73) were treated with GKRS for brainstem metastases. There were metastatic lesions in pons in 23, the midbrain in 6, and the medulla oblongata in 3 patients, respectively. The primary tumor site was lung in 21, breast in 3, kidney in 2 and other locations in 6 patients. The mean tumor volume was $1,517mm^3$ (range, 9-6,000), and the mean marginal dose was 15.9 Gy (range, 6-23). Magnetic Resonance Imaging (MRI) was obtained every 2-3 months following GKRS. Follow-up MRI was possible in 24 patients at a mean follow-up duration of 12.0 months (range, 1-45). Kaplan-Meier survival analysis was used to evaluate the prognostic factors. Results : Follow-up MRI showed tumor disappearance in 6, tumor shrinkage in 14, no change in tumor size in 1, and tumor growth in 3 patients, which translated into a local tumor control rate of 87.5% (21 of 24 tumors). The mean progression free survival was 12.2 months (range, 2-45) after GKRS. Nine patients were alive at the completion of the study, and the overall mean survival time after GKRS was 7.7 months (range, 1-22). One patient with metastatic melanoma experienced intratumoral hemorrhage during the follow-up period. Survival was found to be associated with score of more than 70 on Karnofsky performance status and low recursive partitioning analysis class (class 1 or 2), in terms of favorable prognostic factors. Conclusion : GKRS was found to be safe and effective for management of brainstem metastasis. The integral clinical status of patient seems to be important in determining the overall survival time.

뇌줄기 확산강조 자기공명영상검사 시 뒤틀림을 줄이기 위한 SS-TSE 기법의 신호대잡음비 연구 (The Study on Signal to Noise Ratio of Single-Shot Turbo Spin Echo to Reduce Image Distortion in Brain Stem Diffusion MRI)

  • 구노현;이호범;최관우;손순룡;유병규
    • 한국방사선학회논문지
    • /
    • 제10권4호
    • /
    • pp.241-246
    • /
    • 2016
  • 본 연구는 뇌줄기 확산강조영상검사 시 뒤틀림을 줄이기 위한 SS-TSE 기법의 신호대잡음비 감소를 수치적으로 정량화하여, 낮은 신호대잡음비로 인한 SS-TSE 기법의 문제점을 지적하고자 하였다. 연구방법은 2015년 7월부터 10월까지 뇌줄기 확산강조영상검사를 검사한 35명을 대상으로 하였으며, 기존의 SS-EPI 기법과 SS-TSE 기법을 적용하여 기법별 숨뇌의 신호대잡음비을 비교하였다. 연구결과 b=0 영상의 신호대잡음비는 새로운 SS-TSE 기법($314.41{\pm}42.96$) 적용 시 SS-EPI 기법($514.84{\pm}48.97$) 보다 38.9% 감소하였으며, b=1,000 영상의 경우도 SS-TSE 기법($117.33{\pm}14.04$) 적용 시 SS-EPI 기법($208.65{\pm}25.70$) 보다 43.8% 감소하였다. 결론적으로, 미세 병변을 진단하기 위한 뇌줄기의 확산강조 자기공명영상 검사 시 뒤틀림을 줄이기 위해 SS-TSE 기법을 적용할 경우 신호대잡음비가 저하됨으로 기존의 SS-EPI 기법이나 MS-EPI 기법을 병행하여 검사하는 것이 진단의 정확성을 높일 수 있으리라 사료된다.

하행성 조절계 : 만성 통증에 대한 제어 작용 (Descending Controls: The Self-Regulation of Chronic Pain)

  • 김민재;강수경;전양현;홍정표;어규식
    • Journal of Oral Medicine and Pain
    • /
    • 제38권2호
    • /
    • pp.215-219
    • /
    • 2013
  • 하행성 억제계란 중뇌, 연수, 뇌교에 존재하는 해부학적 유해수용 조절성 기전을 일컫는 용어이다. 이들 부위를 전기적으로 자극을 하면 진통효과가 나타나며, 하행성 억제계의 실패시 지속적인 통증이 야기된다는 것을 알 수 있다. 또한 우울불안 같은 질환은 만성 신경병성 통증 상태로 쉽게 진행됨이 밝혀졌다. 이러한 요인들이 만성 신경병성 통증에 영향을 주는 경로는 아마도 하행성 억제계일 가능성이 있다. 흥미롭게도, 광범위하게 하행성 억제계가 작동하지 않을 경우 과민성 대장증상이 호발하는 것으로 보인다. 또한 이러한 환자들은 높은 불안, 우울 지수가 관찰되기도 한다. 다양한 연구에서, 하행성 억제계에 관여하는 ${\alpha}2$ 아드레날린성 약물, 아편유사약물들이 만성 통증에 사용될 수 있음을 동물에서 평가 중이다. 아직 신체내에서 얼마나 하행성 억제계가 일어나고 있는가에 대해서는 임상적으로 증명하기 힘든 감이 있지만, 여러 감각 신경기전의 수정에 중요한 구실을 하고 있는 것으로 믿어진다. 즉 중추신경계는 대상을 인식하기 위해 말초정보를 받아들이는 기능만 있는 것이 아니라 여러 방법으로 정보의 홍수를 조절하고 선택하는 기능을 동시에 갖추고 있는 것으로 생각된다.

대장(大腸)과 관련(關聯)된 경혈(經穴)들의 신경해부학적(神經解剖學的) 연구(硏究) (Neuroanatomical Studies on the Acupoints Related to the Large Intestine)

  • 강창수;이상룡;이창현;남용재;이광규
    • Journal of Acupuncture Research
    • /
    • 제17권2호
    • /
    • pp.95-117
    • /
    • 2000
  • The purpose of this morphological studies was to investigate the relation between the meridian, acupoints and viscera using neuroanatomical tracers. The common locations of the spinal ganglia, sympathetic chain ganglia, spinal cord and brain projecting to the large intestine meridian were observed following injection of transganglionic tracer, WGA-HRP and transsynaptic neurotropic virus, pseudorabies virus(PRV), Bartha strain(Ba) and PRV-Ba-Gal (Galactosidase)) into the the large intestine(cecum, colon and rectum), ST37 and LI4. After survival times of 96 hours following injection into the thirty rats with WGA-HRP, PRV-Ba and PRV-Ba-Gal. They were perfused, and their spinal ganglia, sympathetic chain ganglia, spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by HRP and X-gal histochemical and PRV immunohistochemical staining method, and observed with a light microscope. The results were as follows : 1. WGA-HRP labeled neurons innervating the large intestine were observed bilaterally within the T13-L4 sympathetic chain ganglia, and T9-11 spinal ganglia. WGA-HRP labeled neurons innervating ST37 were observed within the L3-5 sympathetic chain ganglia, and L2-4 spinal ganglia. WGA-HRP labeled neurons innervating LI4 were observed in the middle cervical ganglion and stellate ganglion, and C5-8 spinal ganglia. 2. In spinal cord, PRV-Ba labeled neurons projecting to the large intestine, ST37 and LI4 were found in thoracic, lumbar and sacral spinal segments. Densely labeled areas of each spinal cord segment were founded in lamina N, V, VII(intermediolateral nucleus), Ⅸ, X and dorsal nucleus. 3. In medulla oblongata, PRV-Ba and PRV-Ba-Gal labeled neurons projecting to the large intestine, ST37 and LI4 were commonly found in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus and gigantocellular nucleus. 4. In pons, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in locus coeruleus, Kolliker-Fuse nucieus and A5 cell group. 5. In midbrain, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in central gray matter. 6. In diencephalon, PRV-Ba and PRV-Ba-Gal labeled neurons were commonly found in paraventricular hypothalamic nucleus. These results suggest that PRV-Ba and PRV-Ba-Gal labeled common areas projecting to the large intestine may be correlated to that of the large intestine meridian, ST37 and LI4. Especially, These morphological results provide that interrelationship of meridian-acupoints -viscera may be related to the central autonomic pathways.

  • PDF

족소양담경(足少陽膽經)에서 투사(投射)되는 신경원(神經元)의 표지부위(標識部位)에 대한 연구(硏究) (Localization of the Neurons Projecting to the Gallbladder Meridian)

  • 육상원;이광규;이상룡;김점영;이창현;이봉희
    • Korean Journal of Acupuncture
    • /
    • 제17권1호
    • /
    • pp.101-121
    • /
    • 2000
  • The purpose of this morphological studies was to investigate the relation to the meridian, acupoint and nerve. The common locations of the spinal cord and brain projecting to the the gallbladder, GB34 and common peroneal nerve were observed following injection of transsynaptic neurotropic virus, pseudorabies virus(PRV), into the gallbladder, GB34 and common peroneal nerve of the rabbit. After survival times of 96 hours following injection of PRV, the thirty rabbits were perfused, and their spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV immunohistochemical staining method, and observed with light microscope. The results were as follows: 1. In spinal cord, PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in thoracic, lumbar and sacral spinal segments. Densely labeled areas of each spinal cord segment were founded in lamina V, VII, X, intermediolateral nucleus and dorsal nucleus. 2. In medulla oblongata, The PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, rostroventrolateral reticular nucleus, medullary reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus, gigantocellular nucleus, lateral paragigantocellular nucleus, principal sensory trigeminal nucleus and spinal trigeminal nucleus. 3. In Pons, PRV labeled neurons were parabrachial nucleus, Kolliker-Fuse nucleus and cochlear nucleus. 4. In midbrain, PRV labeled neurons were founded in central gray matter and substantia nigra. 5. In diencephalon, PRV labeled neurons were founded in lateral hypothalamic nucleus, suprachiasmatic nucleus and paraventricular hypothalamic nucleus. 6. In cerebral cortex, PRV labeled neuron were founded in hind limb area.This results suggest that PRV labeled common areas of the spinal cord projecting to the gallbladder, GB34 and common peroneal nerve may be first-order neurons related to the somatic sensory, viscero-somatic sensory and symapathetic preganglionic neurons, and PRV labeled common area of the brain may be first, second and third-order neurons response to the movement of smooth muscle in gallbladder and blood vessels.These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory system monitoring the internal environment, including both visceral sensation and various chemical and physical qualities of the bloodstream. The present morphological results provide that gallbladder meridian and acupoint may be related to the central autonomic pathways.

  • PDF

면역조직화학법을 이용한 점농어 (Lateolabrax sp.) 뇌에서 두 종류 (sGnRH, cGnRH-II) 의 생식소자극호르몬 분비호르몬의 동정 (Immunohistochemical Identification of the Two Forms of Gonadotropin Releasing Hormones (sGnRH, cGnRH-II) in Spotted Sea Bass (Lateolabrax sp.) Brain)

  • 김정우;이원교;양석우;정관식;조용철;노용길;방인철;김광수;임상구;유명식;권혁방
    • 한국수산과학회지
    • /
    • 제32권3호
    • /
    • pp.266-270
    • /
    • 1999
  • 성숙 점농어 뇌에서 세 종류의 생식소자극호르몬 분비호르몬 (GnRH)의 소재를 면역조직화학법에 의해 동정하였다. sGnRH 양성 신경세포체는 후각망울, 복측 종뇌와 전시각 지역에 분포하였다. 양성 신경섬유는 후각망울에서부터 척수에 이르기까지 다양하게 분포하였다. 면역신경섬유는 뇌의 전지역인 후각망울, 종뇌, 시각시개, 소뇌, 연수 그리고 머리쪽 척수에서 발견되었다. 대부분의 경우 이들은 모두 다발을 형성하지는 않았다. 그러나 후각망울에서 뇌하수체로 뻗어있는 양성 신경섬유는 가장 뚜렷하였다. cGnRH-II 양성 신경세포체는 후엽에서 발견되었다. 그러나 cGnRH-II 면역신경섬유도 후각망울에서 뇌하수체로 뻗은 면역신경섬유를 제외하고는 기본적으로 sGnRH 양성 신경섬유와 분포가 유사했다. 이것은 점농어 뇌에서 sGnRH와 cGnRH-II가 알려진 내인성 펩타이드이며, 이들이 다양한 신경내분비 기능을 수행할 것이라는 점을 의미한다. sGnRH는 GTH의 분비를 조절 할 뿐만 아니라 신경전달조절자로서, cGnRH-II는 단지 신경전달조절자로서 작용할 것으로 생각된다.

  • PDF

흰쥐에서 WGA-HRP와 pseudorabies virus를 이용한 정관의 신경로에 대한 연구 (Neural pathway innervating ductus Deferens of rats by pseudorabies virus and WGA-HRP)

  • 이창현;정옥봉;고병문;이봉희;김수명;김인식;양홍현
    • 대한수의학회지
    • /
    • 제43권1호
    • /
    • pp.11-24
    • /
    • 2003
  • This experimental studies was to investigate the location of PNS and CNS labeled neurons following injection of 2% WGA-HRP and pseudorabies virus (PRY), Bartha strain, into the ductus deferens of rats. After survival times 4-5 days following injection of 2% WGA-HRP and PRV, the rats were perfused, and their brain, spinal cord, sympathetic ganglia and spinal ganglia were frozen sectioned ($30{\mu}m$). These sections were stained by HRP histochemical and PRY inummohistochemical staining methods, and observed with light microscope. The results were as follows ; 1. The location of sympathetic ganglia projecting to the ductus deferens were observed in pelvic ganglion, inferior mesenteric ganglion and L1-6 lwnbar sympathetic ganglia. 2. The location of spinal ganglia projecting to the ductus deferens were observed in T13-L6 spinal ganglia. 3. The PRY labeled neurons projecting to the ductus deferens were observed in lateral spinal nucleus, lamina I, II and X of cervical segments. In thoracic segments, PRY labeled neurons were observed in dorsomedial part of lamina I, II and III, and dorsolateral part of lamina IV and V. Densely labeled neurons were observed in intermediolateral nucleus. In first lumbar segment, labeled neurons were observed in intermediolateral nucleus and dorsal commisural nucleus. In sixth lumbar segment and sacral segments, dense labeled neurons were observed in sacral parasympathetic nuc., lamina IX and X. 4. In the medulla oblongata, PRV labeled neurons projecting to the ductus deferens were observed in the trigeminal spinal nuc., A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nuc., rostroventrolateral reticular nuc., area postrema, nuc. tractus solitarius, raphe obscurus nuc., raphe pallidus nuc., raphe magnus nuc., parapyramidal nuc., lateral reticular nuc., gigantocellular reticular nuc.. 5. In the pons, PRV labeled neurons projecting to the ductus deferens were ohserved in parabrachial nuc., Kolliker-Fuse nuc., locus cooruleus, subcooruleus nuc. and AS noradrenalin cells. 6. In midbrain, PRV labeled neurons projecting to the ductus deferens were observed in periaqueductal gray substance, substantia nigra and dorsal raphe nuc.. 7. In the diencephalon, PRV labeled neurons projecting to the ductus deferens were observed in paraventricular hypahalamic nuc., lateral hypothalamic nuc., retrochiasmatic nuc. and ventromedial hypothalamic nuc.. 8. In cerebrum, PRV labeled neurons projecting to the ductus deferens were observed in area 1 of parietal cortex. These results suggest that WGA-HRP labeled neurons of the spinal cord projecting to the rat ductus deferens might be the first-order neurons related to the viscero-somatic sensory and sympathetic postganglionic neurons, and PRV labeled neurons of the brain and spinal cord may be the second and third-order neurons response to the movement of smooth muscles in ductus deferens. These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory and motor system monitaing the internal environment. These observations provide evidence for previously unknown projections from ductus deferens to spinal cord and brain which may be play an important neuroanatornical basic evidence in the regulation of ductus deferens function.