• Title/Summary/Keyword: Medium molecular weight chitosan

Search Result 23, Processing Time 0.024 seconds

Controlled Release of Bordetella Bronchiseptica Dermonecrotoxin(BBD) Vaccine from BBD-Loaded Chitosan Microspheres In Vitro

  • Jiang, Hu-Lin;Park, In-Kyu;Shin, Na-Ri;Yoo, Han-Sang;Akaike, Toshihiro;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.346-350
    • /
    • 2004
  • Chitosan microspheres were prepared by ionic gelation process with sodium sulfate for nasal vaccine delivery. Bordetella Bronchiseptica Dermonecrotoxin (BBD) as a major virulence factor of a causative agent of atrophic rhinitis (AR) was loaded to the chitosan microspheres for vaccination. Morphology of BBD-loaded chitosan microspheres was observed as spherical shapes. The average particle sizes of the BBD-loaded chitosan microspheres were about $2.69$\mid${\;}\mu\textrm{m}$. More BBD was released with an increase of molecular weight of chitosan and with an increase of medium pH in vitro due to weaker intermolecular interaction between chitosan and BBD. Tumor necrosis $factor-{\alpha}{\;}(TNF{\alpha})$ and nitric oxide (NO) from RAW264.7 cells stimulated with BBD-loaded chitosan microspheres were gradually secreted, suggesting that released BBD from chitosan microspheres had immune stimulating activity of AR vaccine.

Preparation of Mucoadhesive Chitosan-Poly(acrylic acid) Microspheres by Interpolymer Complexation and Solvent Evaporation Method I

  • Cho, Sang-Min;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.95-99
    • /
    • 2005
  • Mucoadhesive microspheres were prepared by interpolymer complexation of chitosan with poly(acrylic acid) (PAA) and solvent evaporation method to increase gastric residence time. The chitosan-PAA complex formation was confirmed by differential scanning calorimetry and swelling study. The DSC thermogram of chitosan-PAA microspheres showed two exothermic peaks for the decomposition of chitosan and PAA. The swelling ratio of the chitosan-PAA microspheres was dependent on the pH of the medium. The swelling ratio was higher at pH 2.0 than at neutral pH. The results indicated that the microspheres were formed by electrostatic interaction between the carboxyl groups of PAA and the amine groups of chitosan. The effect of various process parameters on the formation and morphology of microspheres was investigated. The best microspheres were obtained when 1.5% of the high molecular weight chitosan and 0.3% of PAA were used as an internal phase. The optimum internal phase volume was 7%. The com oil was used as the external phase of emulsion, and span 80 was used as the surfactant. The prepared microspheres had spherical shape.

Antimicrobial Activity and Application of N,N,N-Trimethylchitosan Ammonium Chloride (I) - Antimicrobial Activity against MRSA - (N,N,N-Trimethylchitosan Ammonium Chloride의 항미생물성과 이용(I) - MRSA에 대한 항균성 -)

  • 박찬헌;이양헌;도성국;조경자
    • Textile Coloration and Finishing
    • /
    • v.12 no.3
    • /
    • pp.166-173
    • /
    • 2000
  • Various kinds of water soluble N,N,N-trimethylchitosan ammonium chloride(TMC) with different molecular weights were synthesized to examine the antimicrobial activity against Methicillin Sensitive Staphylococcus aureus(MSSA) and Methicillin Resistant Staphylococcus aureus(MRSA), which causes serious hospital infection, and to apply them to antimicrobial finishing agents for textiles. Chitosan samples were highly deacetylated with sodium hydroxide solution and degraded with hydrogen peroxide to control the molecular weight. TMC has the antimicrobial activities against MRSA and MSSA. TMC showed an excellent antimicrobial activity below the molecular weight of 70,000, especially at 40,000. The minimum inhibitory concentration (MIC) of TMC with optimum molecular weight against MRSA and MSSA was 250ppm. Because MRSA did not resist TMC in the subculture test of bouillon medium, it was expected that the successive use of TMC against MRSA was possible.

  • PDF

Synthesis and Characterization of Thermosensitive Nanoparticles Based on PNIPAAm Core and Chitosan Shell Structure

  • Jung, Hyun;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Yang-Bae
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.265-270
    • /
    • 2009
  • Noble thermosensitive nanoparticles, based on a PNIPAAm-co-AA core and a chitosan shell structure, were designed and synthesized for the controlled release of the loaded drug. PNIPAAm nanoparticles containing a carboxylic group on their surface were synthesized using emulsion polymerization. The carboxylic groups were conjugated with the amino group of a low molecular weight, water soluble chitosan. The particle size of the synthesized nanoparticles was decreased from 380 to 25 nm as the temperature of the dispersed medium was increased. Chitosan-conjugated nanoparticles with $2{\sim}5$ wt% MBA, a crosslinking monomer, induced a stable aqueous dispersion at a concentration of 1mg/1mL. The chitosan-conjugated nanoparticles showed thermo sensitive behaviors such as LCST and size shrinkage that were affected by the PNIPAAm core and induced some particle aggregation around LCST, which was not shown in the NIPAAm-co-AA nanoparticles. These chitosan-conjugated nanoparticles are also expected to be more biocompatible than the PNIPAAm core itself through the chitosan shell structures.

Enzymatic Production of High Molecular Weight Chitooligosaccharides Using Recombinant Chitosanase from Bacillus thuringiensis BMB171

  • Kang, Lixin;Jiang, Sijing;Ma, Lixin
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.45-50
    • /
    • 2018
  • The chitosanase gene (btbchito) of Bacillus thuringiensis BMB171 was cloned and heterologously expressed in the yeast Pichia pastoris. After purification, about 300 mg of recombinant chitosanase was obtained from the 1-1 culture medium with a specific activity of 240 units/mg. Results determined by the combined use of thin layer chromatography (TLC) and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) showed that the chitooligosaccharides (COSs) obtained by chitosan (N-deacetylated by 70%, 80%, and 90%) hydrolysis by rBTBCHITO were comprised of oligomers, with degrees of polymerization (DP) mainly ranging from trimers to heptamers; high molecular weight chitopentaose, chitohexaose, and chitoheptaose were also produced. Hydrolysis products was also deduced using MS since the COSs (n) are complex oligosaccharides with various acetyl groups from one to two, so the non-acetyl COSs (GlcN)n and COSs with more acetyls (> 2) were not detected. The employment of this method in the production of high molecular weight COSs may be useful for various industrial and biological applications, and the activity of chitosanase has great significance in research and other applications.

Flavor Compounds and Physicochemical Properties of Low-fat Functional Sausages Manufactured with Chitosans during Refrigerated Storage (키토산을 첨가한 저지방 기능성 소시지의 향미 성분 분석과 냉장 저장 중의 이화학적인 특성)

  • Park, Sung Y.;Chin, Koo B.;Yoo, Seung S.
    • Food Science of Animal Resources
    • /
    • v.25 no.3
    • /
    • pp.285-294
    • /
    • 2005
  • The objective of this study was to evaluate the physico-chemical properties and flavor compounds of sausages with various levels and molecular weight (MWs) of chitosans, during storage at $4^{\circ}C$. Various MWs (Low: 1.5 kDa; Medium: $30{\sim}50$ kDa; High: 200 kDa) and two levels (0.3 and $0.6\%$) of chiosans were dissolved and measured the viscosity at $4^{\circ}C$, pH values were not affected (p>0.05) by either MWs or levels of chitosans. The addition or high MWs or chitosan into the pork salt soluble protein (SSP) increased the viscosity, whereas no differences were observed in low and medium MWs of chitosan. Textural profile analysis (TPA) was affected by the addition of medium or high MWs of chitosan. As a result, the addition of medium of chitosan increased the hardness, gumminess, chewiness, cohesiveness and springiness values, whereas increased level of chitosan didn't affect TPA values, except few cases. Approximately twenty-nine flavor compounds were identified in the low-fat and regular-fat sausages, however the addition of chitosans didn't impair the flavor composition of the sausages, These results indicated that the addition of chitosans didn't affect the flavor profiles, but affected the textural properties in the sausages, especially MWs higher than 30 kDa.

A Development of Food Preservative with the Waste of Crab Processing (게 가공폐기물을 이용한 식품보존료의 개발에 관한 연구)

  • CHANG Dong-Suck;CHO Hak-Rae;GOO Hyo-Young;CHOE Wi-Kung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.2
    • /
    • pp.70-78
    • /
    • 1989
  • This experiment was carried out to develop the preparation method of chitosan which has strong antimicrobial activity, and also tried to investigate as a natural food preservative with this chitosan. The antimicrobial activity of chitosan was the strongest when deacetylation of chitin was conducted at $146^{\circ}C$ for 8 hours with $50\%$ sodium hydroxide. The growth of Escherichia coil was completely inhibited by adding this low molecular weight chitosan (M. W, 35,000) at the level of concentration of 75ppm to the medium. The antimicrobial activity was strong enough against such Gram positive bacteria as Staphylococcus sp. and Bacillus sp.. The growth of these strains was inhibited by the concentration of 50ppm but it was varied in its kinds against Gram negative bacteria. The concentration of chitosan re-quired for growth inhibition of microorganisms was 100ppm against Pseudomonas sp. and Vibrio sp., 2,000ppm against Salmonella sp.. The growth of Saccharomyces sp. was inhibited by the concentration of 100ppm, but Hansenula sp., Aspergillus sp., Penicillium sp. and Mu-cor sp. did not inhibited by even more than the concentration of 5,000ppm. The shelf life of Mulkimchi (pickle type Kimchi), containing $0.2\%$ chitosan was 10 days longer than control stored at $5^{\circ}C$.

  • PDF

Chitinolytic and Chitosanolytic Activities from Crude Cellulase Extract Produced by A. niger Grown on Apple Pomace Through Koji Fermentation

  • Dhillon, Gurpreet Singh;Brar, Satinder Kaur;Kaur, Surinder;Valero, Jose R.;Verma, Mausam
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1312-1321
    • /
    • 2011
  • Enzyme extracts of cellulase [filter paper cellulase (FPase) and carboxymethyl cellulase (CMCase)], chitinase, and chitosanase produced by Aspergillus niger NRRL-567 were evaluated. The interactive effects of initial moisture and different inducers for FP cellulase and CMCase production were optimized using response surface methodology. Higher enzyme activities [FPase $79.24{\pm}4.22$ IU/gram fermented substrate (gfs) and CMCase $124.04{\pm}7.78$ IU/gfs] were achieved after 48 h fermentation in solid-state medium containing apple pomace supplemented with rice husk [1% (w/w)] under optimized conditions [pH 4.5, moisture 55% (v/w), and inducers veratryl alcohol (2 mM/kg), copper sulfate (1.5 mM/kg), and lactose 2% (w/w)] (p<0.05). Koji fermentation in trays was carried out and higher enzyme activities (FPase $96.67{\pm}4.18$ IU/gfs and CMCase $146.50{\pm}11.92$ IU/gfs) were achieved. The nonspecific chitinase and chitosanase activities of cellulase enzyme extract were analyzed using chitin and chitosan substrates with different physicochemical characteristics, such as degree of deacetylation, molecular weight, and viscosity. Higher chitinase and chitosanase activities of $70.28{\pm}3.34$ IU/gfs and $60.18{\pm}3.82$ to $64.20{\pm}4.12$ IU/gfs, respectively, were achieved. Moreover, the enzyme was stable and retained 92-94% activity even after one month. Cellulase enzyme extract obtained from A. niger with chitinolytic and chitosanolytic activities could be potentially used for making low-molecular-weight chitin and chitosan oligomers, having promising applications in biomedicine, pharmaceuticals, food, and agricultural industries, and in biocontrol formulations.

Molecular Weight Distribution Inside and Outside Capsules Using Coencapsulating Technology (공동캡슐화를 이용한 Capsule 내외부의 분자량 분포)

  • 이기선;임현수
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.321-326
    • /
    • 2001
  • The change of molecular weight inside and outside a capsule produced using coencapsulating technology was investigated. Chitosan and chitosanase were enveloped in this membrane and product released was a loaded the medium by the principle of size exclusion. The leakage of substrate corresponding to the agitation speed was controlled by adjusting the alginate and CaCO$_3$ concentrations. The optimal condition of alginate concentration and agitation speed were 0.5% and 40rpm, respectively. Membrane thickness and capsules diameter were 10 $\mu$m and approx. 3.0 - 1.5 mm, respectively. Molecular weight difference by concentration and alginate viscosity were of little significance. In accordance with the molecular weight distribution versus enzyme concentration relationship, low concentration of enzyme produced high molecular weight oligosaccharides. At a 1.5 mm capsule size the product diffusion rate to outer surface highest. The molecular weight distribution of the released oligosaccharides was ranged from 1000 to 6000 Da. More than 80% of the initial activity of encapsulated enzyme retained after 8hrs of reaction.

  • PDF

Isolation, Purification and Characterization of Chitosanase from Bacillus subtilis CH1

  • Oh, Chul-Hong;Lee, Je-Hee
    • Journal of Aquaculture
    • /
    • v.19 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • Bacillus subtilis strain with highly active chitosanase was isolated from the intestine of Sebastiscus marmoratus (scorpion fish). It was named as Bacillus subtilis CH1 by morphological, biochemical and 165 rRNA gene analysis. The optimal conditions for chitosanase production were investigated. The optimum carbon and nitrogen sources for Bacillus stibtilis CH1 were 2% starch and 1% yeast extract respectively. Unlike other chitosanases, the expression of this chitosanase was not induced or slightly induced with chitosan. The chitosanase secreted into the medium were concentrated with ammonium sulfate precipitation and purified by gel permeation chromatography. The molecular weight of purified chitosanase was 30 kDa. The optimum pH and temperature of purified chitosanase were 5.5 and $60^{\circ}C$ respectively. The purified chitosanase was continuously thermostable at $40^{\circ}C$ and showed stable activity between pH 6.0 and 8.0. Chitosanase activity of Bacillus subtilis CH1 under optimum condition was 4.1 units/ml.