Browse > Article
http://dx.doi.org/10.4014/jmb.1106.06036

Chitinolytic and Chitosanolytic Activities from Crude Cellulase Extract Produced by A. niger Grown on Apple Pomace Through Koji Fermentation  

Dhillon, Gurpreet Singh (INRS-ETE, Universite du Quebec)
Brar, Satinder Kaur (INRS-ETE, Universite du Quebec)
Kaur, Surinder (INRS-ETE, Universite du Quebec)
Valero, Jose R. (INRS-ETE, Universite du Quebec)
Verma, Mausam (Institut de recherche et de developpement en agroenvironnement inc. (IRDA))
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.12, 2011 , pp. 1312-1321 More about this Journal
Abstract
Enzyme extracts of cellulase [filter paper cellulase (FPase) and carboxymethyl cellulase (CMCase)], chitinase, and chitosanase produced by Aspergillus niger NRRL-567 were evaluated. The interactive effects of initial moisture and different inducers for FP cellulase and CMCase production were optimized using response surface methodology. Higher enzyme activities [FPase $79.24{\pm}4.22$ IU/gram fermented substrate (gfs) and CMCase $124.04{\pm}7.78$ IU/gfs] were achieved after 48 h fermentation in solid-state medium containing apple pomace supplemented with rice husk [1% (w/w)] under optimized conditions [pH 4.5, moisture 55% (v/w), and inducers veratryl alcohol (2 mM/kg), copper sulfate (1.5 mM/kg), and lactose 2% (w/w)] (p<0.05). Koji fermentation in trays was carried out and higher enzyme activities (FPase $96.67{\pm}4.18$ IU/gfs and CMCase $146.50{\pm}11.92$ IU/gfs) were achieved. The nonspecific chitinase and chitosanase activities of cellulase enzyme extract were analyzed using chitin and chitosan substrates with different physicochemical characteristics, such as degree of deacetylation, molecular weight, and viscosity. Higher chitinase and chitosanase activities of $70.28{\pm}3.34$ IU/gfs and $60.18{\pm}3.82$ to $64.20{\pm}4.12$ IU/gfs, respectively, were achieved. Moreover, the enzyme was stable and retained 92-94% activity even after one month. Cellulase enzyme extract obtained from A. niger with chitinolytic and chitosanolytic activities could be potentially used for making low-molecular-weight chitin and chitosan oligomers, having promising applications in biomedicine, pharmaceuticals, food, and agricultural industries, and in biocontrol formulations.
Keywords
Cellulase; chitooligomers; chitinase; chitosanase; response surface methodology;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Alvarez, J. M., P. Canessa, R. A. Mancilla, R. Polanco, P. A. Santibanez, and R. Vicuna. 2009. Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor. Fungal Genet. Biol. 46: 104- 111.   DOI   ScienceOn
2 Aro, N., A. Saloheimo, M. Ilmen, and M. Penttila. 2001. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J. Biol. Chem. 276: 24309-24314.   DOI
3 Brijwani, K., H. S. Oberoi, and P. V. Vadlani. 2010. Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Proc. Biochem. 45: 120-128.   DOI   ScienceOn
4 Brar, S. K., M. Verma, R. D. Tyagi, J. R. Valero, and R. Y. Surampalli. 2007. Bacillus thuringiensis fermentation of wastewater and wastewater sludge:Presence and characterization of chitinases. Environ. Technol. 29: 161-170.
5 Cen, P. and L. Xia. 1999. Production of cellulase in solid state fermentation. In T. Scheper (ed.). Recent Progress in Bioconversion of Lignocellulosics. Advances in Biochemical Engineering/Biotechnology, 6.5, Springer; Berlin.
6 Hoster, F., J. E. Schmitz, and R. Danial. 2005. Enrichment of chitinolytic microorganisms: Isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl. Microbiol. Biotechnol. 66: 434-442.   DOI   ScienceOn
7 Ike, M., Y. Ko, K. Yokoyama, J. I. Sumitani, T. Kawaguchi, W. Ogasawara, H. Okada, and Y. Morikawa. 2007. Cellobiohydrolase I (Cel7A) from Trichoderma reesei has chitosonase activity. J. Mol. Cat. B Enz. c47: 159-163.
8 Ilmen, M., A. Saloheimo, M. L. Onnela, and M. E. Penttila. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63: 1298-1306.
9 Lin, H., H. Y. Wang, C. H. Xue, and M. Ye. 2002. Preparation of chitosan oligomers by immobilized papain. Enz. Microbial Technol. 31: 588-592.   DOI   ScienceOn
10 Liu, J. and W. Xia. 2006. Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulase. Biochem. Eng. J. 30: 82-87.   DOI   ScienceOn
11 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265.
12 Luis da Silva, C. A., T. L. Honorato, T. T. Franco, and S. Rodrigues. 2010. Optimization of chitosanase production by Trichoderma koningii sp. under solid-state fermentation. Food Bioproc. Technol. DOI: 10.1007/s11947-010-0479-1.
13 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428.   DOI
14 Morikawa, Y., T. Ohashi, O. Mantani, and H. Okada. 1995. Cellulase induction by lactose in Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 44: 106-111.   DOI   ScienceOn
15 Oberoi, H. S., N. Babbar, S. S. Dhaliwal, S. Kaur, P. V. Vadlani, V. K. Bhargav, and R. T. Patil. 2010. Enhanced oil recovery by pre-treatment of mustard seeds using crude enzyme extract obtained from mixed-culture solid-state fermentation of kinnow (Citrus reticulata) waste and wheat bran. Food Bioproc. Technol. DOI 10.1007/s11947-010-0380-y.
16 Ohtakara, A. 1988. Chitosanase from Streptomyces griseus. Methods Enzymol. 161: 505-510.
17 Shekhar, N., D. Bhattacharaya, K. Dishant, and R. K. Gupta. 2006. Biocontrol of wood-rotting fungi using Streptomyces violaceusniger XL-2. Can. J. Microbiol. 52: 805-808.   DOI   ScienceOn
18 Pelletier, A. and J. Sygush. 1990. Purification and characterization of the chitosanase activity from Bacillus megaterium P1. Appl. Environ. Microbiol. 56: 644-648.
19 Qin, C., B. Zhou, L. Zeng, Z. Zhang, Y. Liu, Y. Du, and L. Xiao. 2004. The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem. 84: 107-115.   DOI   ScienceOn
20 Seo, W. G., H. O. Pae, and H. T. Chung. 2000. Synergistic cooperation between water soluble chitosan oligomers and interferon-$\gamma$ for induction of nitric oxide synthesis and tumoricidal activity in murine peritoneal macrophages. Cancer Lett. 159: 189-195.   DOI   ScienceOn
21 Shin-Ya, Y., M. Y. Lee, H. Hinode, and T. Kajiuchi. 2001. Effect of N-acetylation degree on N-acetylated chitosan hydrolysis with commercially available and modified pectinases. Carbohydr. Res. 7: 85-88.
22 Sukumaran, R. K., R. R. Singhania, G. M. Mathew, and A. Pandey. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bioethanol production. Renew. Energy 34: 421-424.   DOI   ScienceOn
23 Sun, H., X. Ge, Z. Hao, and M. Peng. 2010. Cellulase production by Trichoderma sp. on apple pomace under solidstate fermentation. Afr. J. Biotechnol. 9: 163-166.
24 Ueda, M. and M. Arai. 1992. Purification and some properties of chitinase from Aeromonas sp. No. 10S-24. Biosci. Biotechnol. Biochem. 56460-56464.
25 Wood, T. M. and K. M. Bhat. 1988. Methods for measuring cellulase activities. Methods Enzymol. 160: 87-112.
26 Xia, W., P. Liu, and J. Liu. 2008. Advances in chitosan hydrolysis by non-specific cellulases. Bioresour Technol. 99: 6751-6762.   DOI   ScienceOn
27 Yuan, W. M. and D. L. Crawford. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol. 61: 3119-3128.
28 Dhillon, G. S., H. S. Oberoi, S. Kaur, S. Bansal, and S. K. Brar. 2011. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid state tray fermentation employing mixed-culture of fungi. Indus. Crops Prod. 34: 1160-1167.   DOI   ScienceOn
29 Zhou, G., Z. P. He, G. H. Deng, Z. Y. Huang, and X. C. Tan. 2003. Enzyme kinetics of amylase and cellulase on hydrolyzing chitosan. China Marine Sci. 27: 59-63.
30 Dahia, N., R. Tewari, and G. S. Hoondal. 2006. Biotechnological aspects of chitinolytic enzymes: A review. Appl. Microbiol. 71: 773-782.
31 Dhillon, G. S., S. K. Brar, M. Verma, and R. D. Tyagi. 2011. Enhanced solid-state citric acid bioproduction using apple pomace waste through response surface methodology. J. Appl. Microbiol. 110: 1045-1055.   DOI   ScienceOn
32 Dhillon, G. S., S. K. Brar, and J. R. Valero. 2011. Bioproduction of hydrolytic enzymes using apple pomace waste by Aspergillus niger: Applications in biocontrol formulations and for hydrolysis of chitin/chitosan. Bioproc. Biosyst. Eng. DOI: 10.1007/s00449-011-0552-9.
33 El-Sayed, E. S. A., S. M. Ezzat, M. F. Ghaly, M. Mansour, and M. A. El-Bohey. 2000. Purification and characterization of two chitinases from Streptomyces albovinaceus S-22. World J. Microbiol. Biotechnol. 16: 87-89.   DOI   ScienceOn
34 Fang, X., S. Yano, H. Inoue, and S. Sawayama. 2008. Lactose enhances cellulase production by filamentous fungus Acremonium cellulolyticus. J. Biosci. Bioeng. 106: 115-120.   DOI   ScienceOn
35 Gassara, F., S. K. Brar, R. D. Tyagi, M. Verma, and R. Y. Surampalli. 2010. Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem. Eng. J. 49: 388-394.   DOI   ScienceOn
36 Ghodkey, S. K., L. Ananthenarayan, and L. Rodrigues. 2009. Use of response surface methodology to investigate the effects of milling conditions on damaged starch, dough thickness and chapatti quality. Food Chem. 112: 1010-1015.   DOI   ScienceOn
37 Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268.   DOI
38 Hedges, A. and R. S. Wolfe. 1997. Extracellular enzyme from Myxobacter AL-1 that exhibits both $\beta$-1,4-glucanase and chitosonase activities. J. Bacteriol. 120: 844-853.