• Title/Summary/Keyword: Medium Voltage Drive System

Search Result 15, Processing Time 0.023 seconds

Hybrid-Boost Modular Multilevel Converter-Based Medium-Voltage Multiphase Induction Motor Drive for Subsea Applications

  • Daoud, Mohamed;Elserougi, Ahmed;Massoud, Ahmed;Bojoi, Radu;Abdel-Khalik, Ayman;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.714-726
    • /
    • 2019
  • This paper proposes a hybrid-boost Modular Multilevel Converter (MMC) for the Medium-Voltage (MV) Variable Speed Drives (VSDs) employed in subsea applications, such as oil and gas recovery. In the presented architecture, a hybrid-boost MMC with a reduced number of semiconductor devices driving a multiphase Induction Machine (IM) is investigated. The stepped output voltage generated by the MMC reduces or eliminates the filtering requirements. Moreover, the boosting capability of the proposed architecture eliminates the need for bulky low-frequency transformers at the converter output terminals. A detailed illustration of the hybrid-boost MMC operation, the expected limitations/constraints, and the voltage balancing technique are presented. A simulation model of the proposed MV hybrid-boost MMC-based five-phase IM drive has been built to investigate the system performance. Finally, a downscaled prototype has been constructed for experimental verification.

Application of medium-voltage drive to motor equipment of 800MW gas power plant. (800MW 가스발전소의 모터 설비에 고압 드라이브를 적용한 사례)

  • Kim, Kyoungsue;Oh, Hyunseok;Park, Jongje;Jeon, Jaehyun;Park, Cheolhyun
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.424-425
    • /
    • 2018
  • In the introduction, this paper introduces LS Industrial Systems' medium-voltage drive installed at Hyundai Green Power, an 800MW gas power plant. In the body, it explains the synchronous transfer technology and new speed search technology applied to Forced Draft(FD) Fan and Boiler Feed-water(BF) Pump, which are power generation facilities. Lastly, it shows the annual energy saving amount and operation status which are applied to each facility and proves that it is a successful application case.

  • PDF

THERMAL-FLUID ANALYSIS FOR COOLING PERFORMANCE IMPROVEMENT OF 3.3KV(105A) COMPACT RACK TYPE MEDIUM VOLTAGE INVERTER SYSTEM (3.3kV(105A) COMPACT RACK TYPE 고압 인버터 시스템의 방열 성능 향상을 위한 열유동 해석)

  • Kim, S.Y.;Kim, S.D.;Ryoo, S.R.;You, N.K.;Kim, T.B.;Hong, C.O.;Ko, H.S.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.24-28
    • /
    • 2014
  • With ever rising concerns about saving of fossil fuel resource, there have been an increasing demand for use of energy more efficiently. The electric motor driven inverters can be a great help to improve energy efficiency. They are also used to control the motor speed to the actual need. Therefore the use of them can lead to reduce energy consumption. In particular, the medium voltage(MV) drive systems used for pumps, fans, steel rolling mills and tractions have widespread applications in the industry. They cover power ratings from 0.4MW to 40MW at the MV level of 2.3kV to 13.8kV. The majority of the installed MV drive systems however, are in the 1MW to 4MW range with voltage rating from 3.3kV to 6.6kV. But they are required to reduce size and weight like other power electronic equipments. In this paper, we studied on the 3.3kV(105A) compact rack type inverter system for improving the cooling efficiency. At first, we confirmed the tendency of temperature with computational simulation using ANSYS ICEPAK and actual experimental tests. And then we researched thermal performance improvement designs in order to reduce temperature of the transformer for the safe operation. It can reduce temperature of transformer that using pipe type flow guide in the system. As a result, we found out more efficient solution by thermal-fluid analysis.

Turn-on Loss Reduction for High Voltage Power Stack Using Active Gate Driving Method

  • Kim, Jin-Hong;Park, Joon Sung;Gu, Bon-Gwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.632-642
    • /
    • 2017
  • This paper presents an improved approach towards reducing the switching loss of insulated gate bipolar transistors (IGBTs) for a medium-capacity-class power conditioning system (PCS). In order to improve the switching performance, the switching operation is analyzed, and based on this analysis, an improved switching method that reduces the switching time and switching loss is proposed. Compared to a conventional gate drive scheme, the switching loss, switching time, and delay are improved in the proposed gate driving method. The performance of the proposed gate driving method is verified through several experiments.

A Hierarchical Model Predictive Voltage Control for NPC/H-Bridge Converters with a Reduced Computational Burden

  • Gong, Zheng;Dai, Peng;Wu, Xiaojie;Deng, Fujin;Liu, Dong;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.136-148
    • /
    • 2017
  • In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector modulation (SVM) is proposed. By the hierarchical structure of different cost functions, load currents can be controlled well and common mode voltage can be maintained at low values. The proposed strategy could be easily expanded to the systems with high number of voltage levels while the amount of required calculation is significantly reduced and the advantages of the conventional FCS-MPC strategy are reserved. In addition, a HMPVC-based field oriented control scheme is applied to a drive system with the NPC/H-Bridge converter. Both steady-state and transient performances are evaluated by simulations and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy.

Flying-Capacitor Modular Multilevel Converters with Coupled Inductors for Medium-Voltage Motor Drive System (중전압 전동기 구동시스템을 위한 결합 인덕터를 갖는 플라잉 커패시터 MMC)

  • Le, Duc Dung;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.173-174
    • /
    • 2018
  • This paper proposes the coupled inductor instead of four non-coupled inductors in each leg of the flying-capacitor modular multilevel converter (MMC) to reduce the dimension, weight and cost of the magnetic core. The simulation results have verified the effectiveness of the proposed coupled inductor.

  • PDF

Optimal Voltage Vector Selection Method for Torque Ripple Reduction in the Direct Torque Control of Five-phase Induction Motors

  • Kang, Seong-Yun;Shin, Hye Ung;Park, Sung-Min;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1203-1210
    • /
    • 2017
  • This paper presents an improved switching selection method for the direct torque control (DTC) of five-phase induction motors (IMs). The proposed method is conducted using optimal switching selection. A five-phase inverter has 32 voltage vectors which are divided into 30 nonzero voltage vectors and two zero voltage vectors. The magnitudes of the voltage vectors consist of large, medium, and small voltage vectors. In addition, these vectors are related to the torque response and torque ripple. When a large voltage vector is selected in a drive system, the torque response time decreases with an increased torque ripple. On the other hand, when a small voltage vector is selected, the torque response time and torque ripple increase. As a result, this paper proposes an optimal voltage vector selection method for improved DTC of a five-phase induction machine depending on the situation. Simulation and experimental results verify the effectiveness of the proposed control algorithm.

Fault Diagnosis of Voltage-Fed Inverters Using Pattern Recognition Techniques for Induction Motor Drive (패턴인식 기법을 이용한 유도전동기 구동용 전압형 인버터의 고장진단)

  • Park, Jang-Hwan;Park, Sung-Moo;Lee, Dae-Jong;Kim, Dong-Hwa;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.75-84
    • /
    • 2005
  • Since an unexpected fault of induction motor drive systems can cause serious troubles in many industrial applications, which the technique is required to diagnose faults of a voltage-fed PWM inverter for induction motor drives. The considered fault types are rectifier diodes, switching devices and input terminals with open-circuit faults, and the signal for diagnosis is derived from motor currents. The magnitude of dq-current trajectory is used for the feature extraction of a fault and PCA LDA are applied to diagnose. Also, we show results with respect to the execution time because of the possibility to use that a diagnosis software is embedded in the controllers of medium and small size induction motors drive for real-time diagnosis. After we performed various simulations for the fault diagnosis of the inverter, the usefulness of proposed algerian was verified.

Selection of Voltage Vectors in Three-Level Five-Phase Direct Torque Control for Performance Improvement

  • Tatte, Yogesh N.;Aware, Mohan V.
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2162-2172
    • /
    • 2016
  • This paper presents a Direct Torque Control (DTC) strategy for the five-phase induction motor driven by a three-level five-phase inverter in order to improve the performance of the five-phase induction motor. In the proposed DTC technique, only 22 voltage vectors out of 243 available voltage vectors in a three-level five-phase inverter are selected and are divided in 10 sectors each with a width of $36^{\circ}$. The four different DTC combinations (DTC-I, II, III and IV) for a three-level five-phase induction motor drive are investigated for improving the performance of five-phase induction motor. All four of the DTC strategies utilize a combination of the same large and zero voltage vectors, but with different medium voltage vectors. Out of these four techniques, DTC-II gives the best performance when compared to the others. This DTC-II technique is analyzed in detail for improvements in the performance of five-phase induction motor in terms of torque ripple, x-y stator flux and Total Harmonics Distortion (THD) of the stator phase current when compared to its two-level counterparts. To verify the effectiveness of the proposed three-level five-phase DTC control strategy, a DSP based experimental system is build. Simulation and experimental results are provided in order to validate the proposed DTC technique.

Design of the Inverter Motor Drive System Applied to PFC using Interleaving Method (인터리빙 PFC를 적용한 모터구동 인버터 시스템 설계)

  • Yoon, Seong-Sik;Choi, Hyun-Eui;Kim, Tae-Woo;Ahn, Ho-Kyun;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.14-19
    • /
    • 2010
  • In this paper, using interleaved power factor correction how to improve the inverter efficiency studied. Interleaved method can reduce the conduction losses and the inductor energy. Generally, critical conduction mode (CRM) boost PFC converter used low power level because of the high peak currents. if you use the interleaved mode, CRM PFC can be used medium or high power application. interleaved CRM PFC can reduce current ripple for higher system reliability and size of buck capacitor and EMI filter size. Interleaved CRM PFC that is installed in front of inverter can maintain the constant voltage regardless of the input voltage.