• Title/Summary/Keyword: Medical service robots

Search Result 13, Processing Time 0.029 seconds

Development Trends and Use Cases of Medical Service Robots: Focused on Logistics, Guidance, and Drug Processing Robots (의료서비스 로봇의 개발 동향 및 활용 사례: 물류, 안내, 약제처리 로봇을 중심으로)

  • Kim, Seon Hee;Cho, Yong Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.523-529
    • /
    • 2021
  • Medical service robots are variously defined and classified by researchers and related government departments, but surgical robots and rehabilitation robots are commonly included in medical service robots, and except for these, the robots are classified as other medical service robots. In this study, domestic and foreign development trends and use cases were considered, focusing on logistics, guidance, and drug processing robots among other medical service robots. Logistics and guidance robots were developed quite a lot in Korea and completed a pilot project, or are being commercialized in hospitals, and exported. However, although the drug prcocessing robots was developed in Korea, the robot being use in the hospital was an imported. In order to expand and activate the robot market, systematic follow-up studies such as demand prediction studies are needed.

Essential technical and intellectual abilities for autonomous mobile service medical robots

  • Rogatkin, Dmitry A.;Velikanov, Evgeniy V.
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.59-68
    • /
    • 2018
  • Autonomous mobile service medical robots (AMSMRs) are one of the promising developments in contemporary medical robotics. In this study, we consider the essential technical and intellectual abilities needed by AMSMRs. Based on expert analysis of the behavior exhibited by AMSMRs in clinics under basic scenarios, these robots can be classified as intellectual dynamic systems acting according to a situation in a multi-object and multi-agent environment. An AMSMR should identify different objects that define the presented territory (rooms and paths), different objects between and inside rooms (doors, tables, and beds, among others), and other robots. They should also identify the means for interacting with these objects, people and their speech, different information for communication, and small objects for transportation. These are included in the minimum set required to form the internal world model in an AMSMR. Recognizing door handles and opening doors are some of the most difficult problems for contemporary AMSMRs. The ability to recognize the meaning of human speech and actions and to assist them effectively are other problems that need solutions. These unresolved issues indicate that AMSMRs will need to pass through some learning and training programs before starting real work in hospitals.

User perception of medical service robots in hospital wards: a cross-sectional study

  • Lee, Jung Hwan;Lee, Jae Meen;Hwang, Jaehyun;Park, Joo Young;Kim, Mijeong;Kim, Dong Hwan;Lee, Jae Il;Nam, Kyoung Hyup;Han, In Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.2
    • /
    • pp.116-123
    • /
    • 2022
  • Background: Recently, there have been various developments in medical service robots (MSRs). However, few studies have examined the perceptions of those who use it. The purpose of this study is to identify user perceptions of MSRs. Methods: We conducted a survey of 320 patients, doctors, and nurses. The contents of the survey were organized as follows: external appearances, perceptions, expected utilization, possible safety accidents, and awareness of their responsibilities. Statistical analyses were performed using t-test, chi-square test, and analysis of variance. Results: The most preferred appearance was the animal type, with a screen. The overall average score of positive questions was 3.64±0.98 of 5 points and that of negative questions was 3.24±0.99. Thus, the results revealed that the participants had positive perceptions of MSR. The overall average of all expected utilization was 4.05±0.84. The most expected utilization was to guide hospital facilities. The most worrisome accident was exposure to personal information. Moreover, participants thought that the overall responsibility of the robot user (hospital) was greater than that of the robot manufacturer in the case of safety accidents. Conclusion: The perceptions of MSRs used in hospital wards were positive, and the overall expected utilization was high. It is necessary to recognize safety accidents for such robots, and sufficient attention is required when developing and manufacturing robots.

Robot Development Trend and Prospect (신 성장동력의 로봇개발 동향과 전망)

  • Kim, Sung Woo
    • Convergence Security Journal
    • /
    • v.17 no.2
    • /
    • pp.153-158
    • /
    • 2017
  • The robot imitates humans and recognizes the external environment and judges the situation. The robot is a machine that operates autonomously. Robots are divided into manufacturing robots and service robots. Service robots are classified as professional service robots and personal service robots. Because of the intensified competition of productivity in manufacturing industries, rising safety issues, low birth rate and aging, the robots industry is emerging. Recently, the robot industry is a complex of advanced technology fields, and it is attracting attention as a new industry where innovation potential and growth potential are promising. IT, BT, and NT related elements are fused and implemented, and the ripple effect is very large. Due to changes in social structure and life patterns, social interest in life extension and health is increasing. There is much interest in the medical field. Now the artificial intelligence (AI) industry is growing rapidly. It is necessary to secure global competitiveness through strengthening cooperation between large and small companies. We must combine R&D investment capability and marketing capability, which are advantages of large corporations, and robotic technology. We need to establish a cooperative model and secure global competitiveness through M&A.

RoboSapience : Impending Community of Human and Robots (로보사피엔스 : 현실로 다가온 인간과 로봇이 공존하는 사회)

  • 오상록
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.296-301
    • /
    • 2003
  • Various robots are emerging nowadays to human life from industrial factories. Especially, technologies from multiple disciplines such as information technology (IT), bio technology (BT), and etc. are merged to make novel types of robots. Robots are employed to every place of works such as entertainment, education, service. rescue, medical support, dangerous job, production, etc. The robot in science fictions are now realized so that they become a new species taking human job and more than human.

  • PDF

Fault-Tolerant Middleware for Service Robots (서비스 로봇용 결함 허용 미들웨어)

  • Baek, Bum-Hyeon;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.399-405
    • /
    • 2008
  • Recently, robot technology is actively going on progress to the field of various services such as home care, medical care, entertainment, and etc. Because these service robots are in use nearby person, they need to be operated safely even though hardware and software faults occur. This paper proposes a Fault-Tolerant middleware for a robot system, which has following two characteristics: supporting of heterogeneous network interface and processing of software components and network faults. The Fault-Tolerant middleware consists of a Service Layer(SL), a Network Adaptation Layer(NAL), a Network Interface Layer(NIL), a Operating System ion Layer(OSAL), and a Fault-Tolerant Manager(FTM). Especially, the Fault-Tolerant Manager consists of 4 components: Monitor, Fault Detector, Fault Notifier, and Fault Recover to detect and recover the faults effectively. This paper implements and tests the proposed middleware. Some experiment results show that the proposed Fault-Tolerant middleware is working well.

A Study on the Development of Medical Service Robot (의료용 서비스 로봇 개발에 관한 연구)

  • Kang, Sung-In;Park, Yoon-A;Oh, Am-Suk;Jean, Je-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.77-80
    • /
    • 2011
  • Medical robot has four fields. Surgery assistant robot, robotic surgery, Surgery Simulator, rehabilitation robot. Thus, medical robots is often high precision and reliability requirements for operations are being developed. Medical service robot's another sector is care for service robots. Care services robot is the hospital's reception work and biometric data acquisition of patients, the hospital in location and content information provide to patients. But now medical service robot practical acceptance process failed to progress. In this paper were the medical service robot systems design and implementation. Implemented the robot system is using the standard protocols for the exchange of medical information and can be linked with hospital information system. The hospital's patient reception and processing, to provide care waiting number information.

  • PDF

COSMO - low cost force/moment sensor for robot teaching (COSMO - 로봇교시를 위한 저가형 6축 힘/모멘트 센서)

  • ;Choi, Myoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1621-1623
    • /
    • 1997
  • Use of teaching pendant is the most widespread and economical way to teach desired motion to robots. It is also very primitive,time consuming and ineffective way of teaching which has not changed since the early days of robot. In order to reduce the teaching effor, a new efficient form of teaching is needed. Also, the recent robotics research trend into service robots such as home robot, nurse robot and medical robot calls for a new teaching method which is both easy and inexpensive. In this paper, the design and operation principle of a low cost force/moment sensor is presented. The proposed sensor architecture is so simple and inexpensive that it opens the prospect for a new paradigm of robot teaching which is easy and efficinet. Other prospective areas of application are tele-manipulation of robots wher it can be used in master arm, and virtual environment where it can be used as an user input device.

  • PDF

A Study on the Development of Medical Service Robot (의료용 서비스 로봇 개발에 관한 연구)

  • Kang, Sung-In;Park, Yoon-A;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1245-1250
    • /
    • 2011
  • In this paper, we designed efficient reception system using service robot based on the RFID(Radio Frequency Identification) and HL7(Health Level 7) Protocol. The proposed system offer a paramedic the medical information of the patient, and the patients can receive on a much simpler scale than previously through stable and quick information exchange by RFID and HL7. In addition, We considered environment of medical treatment and designed and implemented standard HL7 message structure. This system was implemented service robots to reception of medical treatment. Furthermore, we have plan to develop bio-sensor which can measure blood pressure, body temperature, etc and interface with robot system by HL7.

The Analysis on Establishment of National Consilience Complex in Korea (보건 및 의료분야 중심의 국가 복합과학기술타운조성 연구)

  • Kim, Jong-Kwon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.113-127
    • /
    • 2011
  • The information technology intensive society rapidly moves from manufacturing industry to information technology industry. This paradigm of Robot is depending on intelligent Robot instead of labor. The conventional Robot worked through environmental variation and shift of job. This Robot is unactively response to men's mandate. And, this Robot have had iterative jobs through manipulation of men. But, this intelligent Robot have new technology through society paradigm shift. The outstanding feature of this Robot is perception function and cognition, mobility and manipulation. The definition of original Robot means forceful and tedious, slavery job. This is from robota, robotnick of the Czech Republic. Karel Capek, a playwriter of the Czech Republic use of this letter at 'Rossum's Universal Robots. The service of U-Health is the fusion of Information Technology and Medical Service. The U-Health provides for doing about household's medical behavior. Conclusionally, the Chungbuk has merit on establishment of national consilience complex such as Medical Robot and U-Health.

  • PDF