• Title/Summary/Keyword: Medical image visualization

Search Result 114, Processing Time 0.029 seconds

A Study on 3d Reconstruction and Simulated Implantation of Human Femur Using Consecutive CT-Images (연속된 CT-Image를 이용한 고관절 3d 형상의 재구성 및 Simulated Implantation System 구축에 관한 연구)

  • 민경준;김중규;최재봉;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 1999
  • In this paper, the prototype of SIS(Simulated Implantation System) for human femoral head is introduced. SIS is a software which carries on a virtual femoral head replacement surgery including 3d visualization as well as various numeric analyses between a patient's femur and artificial femur through certain stages of the image processing and of the computer graphics. Also, processes required after acquiring consecutive CT-images and projected image of an artificial femur are discussed, and the corresponding results including prototype of SIS are given.

  • PDF

A performance Evaluation and Development of 3D Endoscopic Imaging system

  • Song, Chul-Gyo;Kim, Kyeong-Seop;Kim, Nam-Gyun;Lee, Myoung-Ho
    • Journal of KIEE
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • This paper represents the design of 3D endoscopic video system in order to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. In comparison of the polarized and electric shutter-type stereo imaging system, The former is superior in terms of accuracy and performance speed for knot-tying and loop pass test. The result of experiments show that the proposed 3D endoscopy system has a wide viewing angle and zone which is necessary for multi-view and it has better image quality and stability of the optical performances than the electric shutter-type does.

  • PDF

A Novel Method of Shape Quantification using Multidimensional Scaling (다차원 척도법(MDS)을 사용한 새로운 형태 정량화 기법)

  • Park, Hyun-Jin;Yoon, Uei-Joong;Seo, Jong-Bum
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.134-140
    • /
    • 2010
  • Readily available high resolution brain MRI scans allow detailed visualization of the brain structures. Researchers have focused on developing methods to quantify shape differences specific to diseased scans. We have developed a novel method to quantify shape information for a specific population based on Multidimensional scaling(MDS). MDS is a well known tool in statistics and here we apply this classical tool to quantify shape change. Distance measures are required in MDS which are computed from pair-wise image registrations of the training set. Registration step establishes spatial correspondence among scans so that they can be compared in the same spatial framework. One benefit of our method is that it is quite robust to errors in registrations. Applying our method to 13 brain MRI showed clear separation between normal and diseased (Cushing's syndrome). Intentionally perturbing the image registration results did not significantly affect the separability of two clusters. We have developed a novel method to quantify shape based on MDS, which is robust to image mis-registration.

Pulmonary vascular Segmentation Using Insight Toolkit(ITK) (ITK를 이용한 폐혈관 분할)

  • Shin, Min-Jun;Kim, Do-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.554-556
    • /
    • 2011
  • The occurrence of various vascular diseases due to the need for accurate and rapid diagnosis was emphasized. Several limitations to the presence of pulmonary vascular angiography for chest CT imaging was aware of the need for diversity in medical image processing with Insight Toolkit(ITK) suggested pulmonary vascular division. In this paper, by contrast, based on the value of a two-step partitioning of the lungs and blood vessels to perform the process of splitting. Lung area segmentation of each stage image enhancement, threshold value, resulting in areas of interest cut image acquisition and acquired pulmonary vascular division in lung area obtained by applying the fill area. Partitioned on the basis of pulmonary vascular imaging to obtain three-dimensional visualization image of the pulmonary vascular analysis and diagnosis of a variety of perspectives are considered possible.

  • PDF

High Quality Volume Rendering Using the Empty Space Jittering and the Sampling Alignment Method (빈공간 교란과 샘플링 위치 정렬을 이용한 고화질 볼륨 가시화)

  • Kye, Heewon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.852-861
    • /
    • 2013
  • When users use medical volume rendering applications, selecting specific region of volume data and observing the region by magnification is a common process.As the wood-grain artifact is arise from the magnified image, the jittered sampling technique has been used to remove the problem. However, the jittered sampling leads to some noise along the volume edge. In this research, we reveal the reason of the noise, and present a solution. To remove the wood-grain artifact without the noise, we propose the empty space jittering and the sampling alignment method. Using these methods, we can produce high quality volume rendering images without noticeable time consuming.

VR, AR Simulation and 3D Printing for Shoulder and Elbow Practice (VR, AR 시뮬레이션 및 3D Printing을 활용한 어깨와 팔꿈치 수술실습)

  • Lim, Wonbong;Moon, Young Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.175-179
    • /
    • 2016
  • Recent advances in technology of medical image have made surgical simulation that is helpful to diagnosis, operation plan, or education. Improving and enhancing the medical imaging have led to the availability of high definition images and three-dimensional (3D) visualization, it allows a better understanding in the surgical and educational field. The Real human field of view is stereoscopic. Therefore, with just 2D images, stereoscopic reconstruction process through the surgeon's head, is necessary. To reduce these process, 3D images have been used. 3D images enhanced 3D visualization, it provides significantly shorter time for surgeon for judgment in complex situations. Based on 3D image data set, virtual medical simulations, such as virtual endoscopy, surgical planning, and real-time interaction, have become possible. This article describes principles and recent applications of newer imaging techniques and special attention is directed towards medical 3D reconstruction techniques. Recent advances in technology of CT, MR and other imaging modalities has resulted in exciting new solutions and possibilities of shoulder imaging. Especially, three-dimensional (3D) images derived from medical devices provides advanced information. This presentation describes the principles and potential applications of 3D imaging techniques, simulation and printing in shoulder and elbow practice.

Efficient Semi-automatic Annotation System based on Deep Learning

  • Hyunseok Lee;Hwa Hui Shin;Soohoon Maeng;Dae Gwan Kim;Hyojeong Moon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.267-275
    • /
    • 2023
  • This paper presents the development of specialized software for annotating volume-of-interest on 18F-FDG PET/CT images with the goal of facilitating the studies and diagnosis of head and neck cancer (HNC). To achieve an efficient annotation process, we employed the SE-Norm-Residual Layer-based U-Net model. This model exhibited outstanding proficiency to segment cancerous regions within 18F-FDG PET/CT scans of HNC cases. Manual annotation function was also integrated, allowing researchers and clinicians to validate and refine annotations based on dataset characteristics. Workspace has a display with fusion of both PET and CT images, providing enhance user convenience through simultaneous visualization. The performance of deeplearning model was validated using a Hecktor 2021 dataset, and subsequently developed semi-automatic annotation functionalities. We began by performing image preprocessing including resampling, normalization, and co-registration, followed by an evaluation of the deep learning model performance. This model was integrated into the software, serving as an initial automatic segmentation step. Users can manually refine pre-segmented regions to correct false positives and false negatives. Annotation images are subsequently saved along with their corresponding 18F-FDG PET/CT fusion images, enabling their application across various domains. In this study, we developed a semi-automatic annotation software designed for efficiently generating annotated lesion images, with applications in HNC research and diagnosis. The findings indicated that this software surpasses conventional tools, particularly in the context of HNC-specific annotation with 18F-FDG PET/CT data. Consequently, developed software offers a robust solution for producing annotated datasets, driving advances in the studies and diagnosis of HNC.

High-Speed SD-OCT for Ultra Wide-field Human Retinal Three Dimensions Imaging using GPU (병렬처리 그래픽 기술 기반의 Spectral Domain-Optical Coherence Tomography를 이용한 3차원 광 대역 망막 촬영)

  • Park, Kibeom;Cho, Nam Hyun;Wijesinghe, Ruchire Eranga Henry;Kim, Jeehyun
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.135-140
    • /
    • 2013
  • We have developed an ultra wide-field of view Optical Coherence Tomography(OCT) which has capability to 2D and 3D views of cross-sectional structure of in vivo human retina. Conventional OCT has a limitation in visualizing the entire retina due to a reduced field of view. We designed an optical setup to significantly improve the lateral scanning range to be more than 20 mm. The entire human retinal structure in 2D and 3D was reported in this paper with the developed OCT system. Also, we empirically searched an optimized image size for real time visualization by analyzing variation of the frame rate with different lateral scan points. The size was concluded to be $1024{\times}2000{\times}300$ pixels which took 9 seconds for visualization.

Evaluation of Clinical Effectiveness of 3D Digital Endoscopic Image (3차원 디지탈 내시경 영상의 임상적 효용성 평가)

  • Song, Chul-Gyu;Kim, Kyeong-Seop;Kim, Nam-Gyun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.5 no.1
    • /
    • pp.26-31
    • /
    • 2002
  • This paper represents the design of 3D endoscopic video system in order to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. Minimally invasive techniques have set new standards in all surgical may experience less post-operative discomfort, shorter hospitalization, and quicker recuperation. Finally, the aim of the present study was to determine the influence of 2D and 3D video imaging on defined tasks on a laparoscopic trainer.

  • PDF

Confocal Laser Endomicroscopy in the Diagnosis of Biliary and Pancreatic Disorders: A Systematic Analysis

  • Do Han Kim;Somashekar G. Krishna;Emmanuel Coronel;Paul T. Kroner;Herbert C. Wolfsen;Michael B. Wallace;Juan E. Corral
    • Clinical Endoscopy
    • /
    • v.55 no.2
    • /
    • pp.197-207
    • /
    • 2022
  • Background/Aims: Endoscopic visualization of the microscopic anatomy can facilitate the real-time diagnosis of pancreatobiliary disorders and provide guidance for treatment. This study aimed to review the technique, image classification, and diagnostic performance of confocal laser endomicroscopy (CLE). Methods: We conducted a systematic review of CLE in pancreatic and biliary ducts of humans, and have provided a narrative of the technique, image classification, diagnostic performance, ongoing research, and limitations. Results: Probe-based CLE differentiates malignant from benign biliary strictures (sensitivity, ≥89%; specificity, ≥61%). Needle-based CLE differentiates mucinous from non-mucinous pancreatic cysts (sensitivity, 59%; specificity, ≥94%) and identifies dysplasia. Pancreatitis may develop in 2-7% of pancreatic cyst cases. Needle-based CLE has potential applications in adenocarcinoma, neuroendocrine tumors, and pancreatitis (chronic or autoimmune). Costs, catheter lifespan, endoscopist training, and interobserver variability are challenges for routine utilization. Conclusions: CLE reveals microscopic pancreatobiliary system anatomy with adequate specificity and sensitivity. Reducing costs and simplifying image interpretation will promote utilization by advanced endoscopists.