• Title/Summary/Keyword: Medical Software

Search Result 1,328, Processing Time 0.026 seconds

Extracting Ontology from Medical Documents with Ontology Maturing Process

  • Nyamsuren, Enkhbold;Kang, Dong-Yeop;Kim, Su-Kyoung;Choi, Ho-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.50-52
    • /
    • 2009
  • Ontology maintenance is a time consuming and costly process which requires special skill and knowledge. It requires joint effort of both ontology engineer and domain specialist to properly maintain ontology and update knowledge in it. This is specially true for medical domain which is highly specialized domain. This paper proposes a novel approach for maintenance and update of existing ontologies in a medical domain. The proposed approach is based on modified Ontology Maturing Process which was originally developed for web domain. The proposed approach provides way to populate medical ontology with new knowledge obtained from medical documents. This is achieved through use of natural language processing techniques and highly specialized medical knowledge bases such as Unified Medical Language System.

Methods of Extracting and Providing R&D Documentation Guideline for Licensing Medical Device Software

  • Kim, DongYeop;Lee, Byungjeong;Lee, Jung-Won
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.69-75
    • /
    • 2019
  • The safety and performance of medical device software is managed through life-cycle processes, which represent the entire process of research and development (R&D). The life-cycle process of medical device software is represented by an international standard called IEC 62304, ISO/IEC 12207. In order to license the product, the manufacturer must have document artifacts that comply with the IEC 62304 standard. However, these standards only describe the content of the activity and do not provide a method or procedure for documentation. Therefore, this paper suggests R&D documentation guidelines that assist medical device software developers to have R&D documents conforming to the standards. For this purpose, this study identifies the requirements related to documentation among the requirements existing in the standard and extracts them in the form of guidelines showing only the core information of the requirements. In addition, through the Web framework implemented based on this research, the developer can evaluate whether the technical documents are written in accordance with the R&D document guidelines. Medical device software manufacturers can efficiently produce high-quality research and development documents through R&D documentation guidelines, and they can have standards-compliantresearch and development documentation required for licensing procedures.

Comparison of Dose Statistics of Intensity-Modulated Radiation Therapy Plan from Varian Eclipse Treatment Planning System with Novel Python-Based Indigenously Developed Software

  • Sougoumarane Dashnamoorthy;Karthick Rajamanickam;Ebenezar Jeyasingh;Vindhyavasini Prasad Pandey;Kathiresan Nachimuthu;Imtiaz Ahmed;Pitchaikannu Venkatraman
    • Progress in Medical Physics
    • /
    • v.33 no.3
    • /
    • pp.25-35
    • /
    • 2022
  • Purpose: Planning for radiotherapy relies on implicit estimation of the probability of tumor control and the probability of complications in adjacent normal tissues for a given dose distribution. Methods: The aim of this pilot study was to reconstruct dose-volume histograms (DVHs) from text files generated by the Eclipse treatment planning system developed by Varian Medical Systems and to verify the integrity and accuracy of the dose statistics. Results: We further compared dose statistics for intensity-modulated radiotherapy of the head and neck between the Eclipse software and software developed in-house. The dose statistics data obtained from the Python software were consistent, with deviations from the Eclipse treatment planning system found to be within acceptable limits. Conclusions: The in-house software was able to provide indices of hotness and coldness for treatment planning and store statistical data generated by the software in Oracle databases. We believe the findings of this pilot study may lead to more accurate evaluations in planning for radiotherapy.

Development of the DVH management software for the biologically-guided evaluation of radiotherapy plan

  • Kim, Bo-Kyong;Park, Hee-Chul;Oh, Dong-Ryul;Shin, Eun-Hyuk;Ahn, Yong-Chan;Kim, Jin-Sung;Han, Young-Yih
    • Radiation Oncology Journal
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2012
  • Purpose: To develop the dose volume histogram (DVH) management software which guides the evaluation of radiotherapy (RT) plan of a new case according to the biological consequences of the DVHs from the previously treated patients. Materials and Methods: We determined the radiation pneumonitis (RP) as an biological response parameter in order to develop DVH management software. We retrospectively reviewed the medical records of lung cancer patients treated with curative 3-dimensional conformal radiation therapy (3D-CRT). The biological event was defined as RP of the Radiation Therapy Oncology Group (RTOG) grade III or more. Results: The DVH management software consisted of three parts (pre-existing DVH database, graphical tool, and $Pinnacle^3$ script). The pre-existing DVH data were retrieved from 128 patients. RP events were tagged to the specific DVH data through retrospective review of patients' medical records. The graphical tool was developed to present the complication histogram derived from the preexisting database (DVH and RP) and was implemented into the radiation treatment planning (RTP) system, $Pinnacle^3$ v8.0 (Phillips Healthcare). The software was designed for the pre-existing database to be updated easily by tagging the specific DVH data with the new incidence of RP events at the time of patients' follow-up. Conclusion: We developed the DVH management software as an effective tool to incorporate the phenomenological consequences derived from the pre-existing database in the evaluation of a new RT plan. It can be used not only for lung cancer patients but also for the other disease site with different toxicity parameters.

Building a Rule-Based Goal-Model from the IEC 62304 Standard for Medical Device Software

  • Kim, DongYeop;Lee, Byungjeong;Lee, Jung-Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4174-4190
    • /
    • 2019
  • IEC 62304 is a standard for the medical device software lifecycle. Developers must develop software that complies with all specifications in the standard for licensing. However, because the standard contains not only a large number of specifications, but also domain-specific information and association relationships between specifications, it requires considerable effort and time for developers to understand and interpret the standard. To support developers, this paper presents a method for extracting the contents of the IEC 62304 standard as a goal model, which is the core methodologies of requirements engineering. The proposed method analyzes the grammar of the standard to robustly extract complex structures and various information from standard specifications and define rules that extract goals and links from syntactic element units. We validated the actual extraction process for the standard document experimentally. Based on the extracted goal model, developers can intuitively and efficiently comply with the standard and track specific information within the medical software and standard domains.

Summative Usability Assessment of Software for Ventilator Central Monitoring System (인공호흡기 중앙감시시스템 소프트웨어의 사용적합성 총괄평가)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.363-376
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.The purpose of this study is to conduct a usability assessment to ensure that ergonomic design has been applied so that the ventilator central monitoring system can improve user satisfaction, efficiency, and safety. The rapid spread of COVID-19, which began in 2019, caused significant damage global medical system. In this situation, the need for a system to monitor multiple patients with ventilators was highlighted as a solution for various problems. Since medical device software is closely related to human life, ensuring their safety and satisfaction is important before their actual deployment in the field. In this study, a total of 21 participants consisting of respiratory staffs conducted usability test according to the use scenarios in the simulated use environment. Nine use scenarios were conducted to derive an average task success rate and opinions on user interface were collected through five-point Likert scale satisfaction evaluation and questionnaire. Participants conducted a total of nine use scenario tasks with an average success rate of 93% and five-point Likert scale satisfaction survey showed a high satisfaction result of 4.7 points on average. Users evaluated that the device would be useful for effectively managing multiple patients with ventilators. However, improvements are required for interfaces associated with task that do not exceed the threshold for task success rate. In addition, even medical devices with sufficient safety and efficiency cannot guarantee absolute safety, so it is suggested to continuously evaluate user feedback even after introducing them to the actual site.

Development of an Analytic Software Using Pencil Beam Scanning Proton Beam

  • Jeong, Seonghoon;Yoon, Myonggeun;Chung, Kwangzoo;Han, Youngyih;Lim, Do Hoon;Choi, Doo Ho
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.22-26
    • /
    • 2017
  • We have developed an analytic software that can easily analyze the spot position and width of proton beam therapy nozzles in a periodic quality assurance. The developed software consists of an image processing method that conducts an analysis using center-of-spot geometry and a Gaussian fitting method that conducts an analysis through Gaussian fitting. By using the software, an analysis of 210 proton spots with energies 150, 190, and 230 MeV showed a deviation of approximately 3% from the mean. The software we developed to analyze proton spot positions and widths provides an accurate analysis and reduces the time for analysis.

Design and Construction of a NLP Based Knowledge Extraction Methodology in the Medical Domain Applied to Clinical Information

  • Moreno, Denis Cedeno;Vargas-Lombardo, Miguel
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.376-380
    • /
    • 2018
  • Objectives: This research presents the design and development of a software architecture using natural language processing tools and the use of an ontology of knowledge as a knowledge base. Methods: The software extracts, manages and represents the knowledge of a text in natural language. A corpus of more than 200 medical domain documents from the general medicine and palliative care areas was validated, demonstrating relevant knowledge elements for physicians. Results: Indicators for precision, recall and F-measure were applied. An ontology was created called the knowledge elements of the medical domain to manipulate patient information, which can be read or accessed from any other software platform. Conclusions: The developed software architecture extracts the medical knowledge of the clinical histories of patients from two different corpora. The architecture was validated using the metrics of information extraction systems.

Development and Implementation of an open Medical Device Platform (의료기기 공용기술 활용 촉진을 위한 개방형 의료기기 플랫폼 개발 및 구현)

  • Kim, Daegwan;Hong, JooHyun;Lee, Hyojin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.313-321
    • /
    • 2021
  • The global market for medical devices is huge, and it will continue showing remarkable growth in the future. However, due to the entry barrier to develop medical devices, many domestic companies have technical problems in entering the medical device industry. In this paper, we introduce an open platform that can help with research and development for companies in the healthcare industry. This open platform consists of a hardware part and a software part. A hardware part is combined into CPU, base and other modules that are easy to replace and assemble. A software part is based on application software for development developed by Bionet. We test the performance of the open medical device platform using a biosignal processing algorithm.

Deep learning-based assistance software implementation for pulmonary embolism diagnosis (딥러닝 기반 폐색전증 진단 보조 소프트웨어 구현)

  • Roh, Tae seong;Kim, Sea Jung;Shin, Jin Woo;Kim, Jun Hyung;Kim, Kou Gyeom;Ryu, Jong Hyun;Jeong, Kil Hwan;Kim, Dae Won;Jun, Hong Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.393-396
    • /
    • 2021
  • 폐색전증(Pulmonary Embolism : PE)은 사망률이 높은 질환중 하나이다. 초기에 정확한 진단 및 치료를 시행하는 경우 사망과 재발의 경우가 흔치 않으나 지연 진단이 일어나는 경우 사망률은 높기 때문에 보다 정확하고 빠른 검사법이 필요하다. 본 연구에서는 폐색전증 환자의 흉부 CT 데이터를 가지고 딥러닝 알고리즘을 생성하여 소프트웨어를 구현하고자 한다. 개발된 딥러닝 기반의 폐색전증 진단 보조 소프트웨어는 CT 촬영 후 즉각적인 질환 예측으로 판독 시간의 단축과 효율성을 제공할 것으로 기대된다.