• Title/Summary/Keyword: Medical Polymers

Search Result 105, Processing Time 0.03 seconds

Comparative in vivo biodistributions of nanoparticles and polymers of 177lutetium-labeled hyaluronic acids in mice during 28 days

  • Lin, Chunmei;Jeong, Ju-Yeon;Yon, Jung-Min;Park, Seul Gi;Gwon, Lee Wha;Lee, Jong-Geol;Baek, In-Jeoung;Nahm, Sang-Soep;Lee, Beom Jun;Yun, Young Won;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.2
    • /
    • pp.105-111
    • /
    • 2017
  • Hyaluronic acid (HA) has been investigated for biomedical and pharmaceutical applications. This study was conducted to determine the distributions of HA nanoparticles (NPs; size 350-400 nm) and larger HA polymers in mice at intervals after application. $^{177}Lutetium$ (Lu)-labeled HA-NPs or HA polymers were intravenously injected (5 mg/kg) into male ICR mice, and radioactivity levels in blood and target organs were measured from 0.25 h to 28 days post-injection. In blood, the radioactivities of HA-NPs and HA polymer peaked at 0.5 h after injection but were remarkably decreased at 2 h; subsequently, they maintained a constant level until 6 days post-injection. HA-NPs and HA polymers were observed in the liver, spleen, lung, kidney, and heart (in ascending order) but were seldom observed in other organs. After 3 days, both the HA-NP and HA polymer levels showed similar steady decreases in lung, kidney, and heart. However, in liver and spleen, the HA-NP levels tended to decrease gradually after 1 day and both were very low after 14 days, whereas the HA polymer level accumulated for 28 days. The results indicate that HA-NPs, with their faster clearance pattern, may act as a better drug delivery system than HA polymers, especially in the liver and spleen.

Biodegradable Polymers for Tissue Engineering : Review Article (조직 공학용 생분해성 고분자 : 총설)

  • Park, Byoung Kyeu
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.251-263
    • /
    • 2015
  • Scaffolds play a crucial role in the tissue engineering. Biodegradable polymers with great processing flexibility and biocompatability are predominant scaffolding materials. New developments in biodegradable polymers and their nanocomposites for the tissue engineering are discussed. Recent development in the scaffold designs that mimic nano and micro features of the extracellular matrix (ECM) of bones, cartilages, and vascular vessels are presented as well.

A study on the ultrasonic weldability of the dissimilar plastics (이종 플래스틱의 초음파 용접성에 대한 연구)

  • 이철구
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.48-57
    • /
    • 1991
  • Welding of dissimilar materials is an area of growing importance in the automotive, aerospace, electronics medical and other domestic appliance industries. This study investigated the ultrasonic welding of dissimilar polymers. Two amorphous and two semicrystalline polymers were used, utilizing all possible welding combinations. For each combination of dissimilar materials, the weldabilitys of the joint was evaluated as a function of weld time, amplitude of vibration and pressure. The joint was also examined microscopically to analyze the melting and flow of the materials. It was generally around found that welding of amorphus polymers resulted in very poor joints. Welding of the amorphous polymers together and welding of the semicrystalline polymers together produced good joints.

  • PDF

Heparinized Bioactive Polymers for Biomedical Applications

  • Park, Ki-Dong;Go, Dong-Hyun;Bae, Jin-Woo;Jee, Kyung-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.48-49
    • /
    • 2006
  • The incorporation of heparin to biomaterials has been widely studied to improve the biocompatibility (blood and cell) of biomaterials surfaces. In our laboratory, various kinds of heparinized polymers including heparinized thermosensitive polymers ($Tetronic^{(R)}$-PLA(PCL)-heparin copolymers) and star-shaped PLA-heparin copolymers have been developed as a novel blood/cell compatible material. These heparinized polymers have demonstrated their unique properties due to bound heparin, resulting in improved biocompatibility. These heparinized bioactive polymers can be applied as blood and tissue compatible biodegradable materials in variable medical application such as tissue engineering and drug delivery system.

  • PDF

Long-circulating and target-specific distributions of cyanine 5.5-labeled hyaluronic acid nanoparticles in mouse organs during 28 days after a single administration

  • Yun, Tae Sik;Lin, Chunmei;Yon, Jung-Min;Park, Seul Gi;Gwon, Lee Wha;Lee, Jong-Geol;Baek, In-Jeoung;Nahm, Sang-Seop;Lee, Beom Jun;Yun, Young Won;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.4
    • /
    • pp.183-192
    • /
    • 2018
  • Although hyaluronic acid (HA) has been developed as a nanoparticle (NP; 320-400 nm) for a drug delivery system, the tissue targeting efficacy and the pharmacokinetics of HA-NPs are not yet fully understood. After a dose of 5 mg/kg of cyanine 5.5-labeled HA-NPs or HA-polymers was intravenously administrated into mice, the fluorescence was measured from 0.5 h to 28 days. The HA-NPs fluorescence was generally stronger than that of HA-polymers, which was maintained at a high level over 7 days in vivo, after which it gradually decreased. Upon ex vivo imaging, liver, spleen, kidney, lung, testis and sublingual gland fluorescences were much higher than that of other organs. The fluorescence of HA-NPs in the liver, spleen and kidney was highest at 30 min, where it was generally maintained until 4 h, while it drastically decreased at 1 day. However, the fluorescence in the liver and spleen increased sharply at 7 days relative to 3 days, then decreased drastically at 14 days. Conversely, the fluorescence of HA-polymers in the lymph node was higher than that of HA-NPs. The results presented herein may have important clinical implications regarding the safety of as self-assembled HA-NPs, which can be widely used in biomedical applications.

Application of Polymers in Cosmetics (고분자 물질의 화장품 응용)

  • Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.411-422
    • /
    • 2013
  • Polymers in cosmetics are used to deliver desired attributes to skin and hair. Precisely constructed block and graft copolymers widen the range of available mechanical properties and compatibilities. Stimuli responsive hydrophobic polymers can be triggered to become hydrophilic by changes in their environment and this can confer waterproof properties at low temperature and easy water removal at higher temperatures. Transfer-resistant cosmetics can be possible due to silicone resins. The control of rheology properties in cosmetics gradually continue to be easy with copolymers. Durability of colors and fragrances for rinse-off products can be enhanced by delivery systems from complex coacervates. Polymeric anti-microbials promise product preservation while minimizing the concern of skin permeation. This article reviews recent trends in the use of polymers in cosmetics.

NMR Microimaging for Noninvasive Investigation of Polymers (고분자의 비파괴 연구를 위한 핵자기 공명 현미영상법)

  • Lee, D.H.;Ko, R.K.;Moon, C.H.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.253-256
    • /
    • 1995
  • Polymers have been one of the emerging biomedical materials in the area of biomedical research which are applicable to the human body. For human applications, noninvasive characterization of the biomedical polymers has been one of the important topics, and is valuable information. Among others, the swelling rate is one of the important measurements needed for the hydrophilic polymers. NMR imaging has been a suitable method for the noninvasive study of such a material since it is sensitive to many physical and biochemical changes of the specimens. In addition, NMR techniques possess many useful intrinsic properties such as the relaxation and diffusion effects. The present study has provided a noble and noninvasive method of measuring the process of swelling as well as volumetric changes occurred in polymers and drug delivery processes in a drug delivery system (DDS) together with changes of released drug. This gives information, relating with both water ingress process, volumetric changes of polymer specimens and the visualization of sequential drug delivery process. Also, this study provides more reliable method to ascertain the time dependent swelling process compared to the conventional method. The important aspects is that the proposed method is truly noninvasive and is able to ascertain time dependent processes.

  • PDF

Covalent Immobilization of Trypsin on a Novel Aldehyde-Terminated PAMAM Dendrimer

  • Hamidi, Aliasghar;Rashidi, Mohammad R.;Asgari, Davoud;Aghanejad, Ayuob;Davaran, Soodabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2181-2186
    • /
    • 2012
  • Dendrimers are a novel class of nonlinear polymers and due to their extensive applications in different fields, called versatile polymers. Polyamidoamine (PAMAM) dendrimers are one of the most important dendrimers that have many applications in nanobiotechnology and industry. Generally aldehyde terminated dendrimers are prepared by activation of amine terminated dendrimers by glutaraldehyde which has two problems, toxicity and possibility of crosslink formation. In this study, novel aldehyde-terminated PAMAM dendrimer was prepared and used for covalent immobilization of trypsin by the aim of finding a special reagent which can prevent crosslinking and deactivation of the enzyme. For this purpose aminoacetaldehydedimethylacetal (AADA) was used as spacer group between aldehyde-terminated PAMAM and trypsin.The findings of this study showed that immobilization of trypsin not only resulted higher optimal temperature, but also increased the thermal stability of the immobilized enzyme in comparison to the free enzyme.

Regioselective Acylation on Glycol Chitosan (글라이콜 키토산의 위치선택적 아실화)

  • Lee, Wonbum;Park, Chong-Rae
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.297-298
    • /
    • 2003
  • Chitin is a natural biopolymer that, with its derivative chitosan, has been represented as a biomaterial with considerable potential in wide ranging medical applications. But there are some limitations in using chitosan as attained, for instance, the problem of water solubility$^1$. In order to use chitosan in various applications (e.g. drug carrier), chemical modifications are often necessary$^2$. (omitted)

  • PDF

Applications of Polymers in Bioseparations and Delivery of Biomolecules

  • Hoffman, Allan S.
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.109-110
    • /
    • 1986
  • Polymers are widely applied in bioseparation processes as well as in drug delivery systems. These two fields have a certain commonality, in that they involve either removal or delivery of specific biomolecules from or to an aqueous environment It is also to be noted that therapeutic toxin renloval is an example of a bioseparation process. This presentation will focus on the use of polys!ors in physical as well as biospecific separations and delivery of biomolecules. Several new systems will also be described.

  • PDF