• 제목/요약/키워드: Medical Image Segmentation

검색결과 259건 처리시간 0.025초

Application of Artificial Intelligence to Cardiovascular Computed Tomography

  • Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • 제22권10호
    • /
    • pp.1597-1608
    • /
    • 2021
  • Cardiovascular computed tomography (CT) is among the most active fields with ongoing technical innovation related to image acquisition and analysis. Artificial intelligence can be incorporated into various clinical applications of cardiovascular CT, including imaging of the heart valves and coronary arteries, as well as imaging to evaluate myocardial function and congenital heart disease. This review summarizes the latest research on the application of deep learning to cardiovascular CT. The areas covered range from image quality improvement to automatic analysis of CT images, including methods such as calcium scoring, image segmentation, and coronary artery evaluation.

코바기반 협업지원 의료영상 분석 및 가시화 시스템 (A CORBA-Based Collaborative Work Supported Medical Image Analysis and Visualization System)

  • 전준철;손재기
    • 정보처리학회논문지D
    • /
    • 제10D권1호
    • /
    • pp.109-116
    • /
    • 2003
  • 본 논문에서는 분산환경에서 사용자들에게 효과적인 접근성과 사용성을 제공하는 코바기반 협업 지일 의료영상 분석 덴 가시화 시스템을 소개한다. 개발된 시스템은 분산환경에서 의료영상 분활 및 모델링과 같은 의료영상 분석 및 처리 기능을 제공하며 아울러 의료영상 데이터의 효율적 관리 기능을 제공한다. 영상의 분류 및 특정 세포조직의 추출은 베이지안 방법과 활성 윤곽선 모델등 적용하여 수행되며, 획득된 영상의 특성정보는 의료영상의 실시간 3차원 모델링에 사용된다. 개발된 시스템은 브로드 케스팅과 동기화 메커니즘에 기반하여 시스템을 사용하는 다중 사용자들간의 협동작업을 지원한다. 본 시스템은 분산 프로그램을 지원하는 자바 및 코바에 의해 개발되었으며, 따라서 클라이언트는 분산 객체의 위치나 분산객체가 수행되는 운영체제에 관한 정보가 없이도 메소드 호출방법에 의해 서버 객체에 접근할 수 있다.

디지털 X선 영상을 이용한 치아 와동 컴퓨터 보조 검출 시스템 연구 (A Study of Computer-aided Detection System for Dental Cavity on Digital X-ray Image)

  • 허창회;김민정;조현종
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1424-1429
    • /
    • 2016
  • Segmentation is one of the first steps in most diagnosis systems for characterization of dental caries in an early stage. The purpose of automatic dental cavity detection system is helping dentist to make more precise diagnosis. We proposed the semi-automatic method for the segmentation of dental caries on digital x-ray images. Based on a manually and roughly selected ROI (Region of Interest), it calculated the contour for the dental cavity. A snake algorithm which is one of active contour models repetitively refined the initial contour and self-examination and correction on the segmentation result. Seven phantom tooth from incisor to molar were made for the evaluation of the developed algorithm. They contained a different form of cavities and each phantom tooth has two dental cavities. From 14 dental cavities, twelve cavities were accurately detected including small cavities. And two cavities were segmented partly. It demonstrates the practical feasibility of the dental lesion detection using Computer-aided Detection (CADe).

다중 모달 정합에 의한 Visible Human의 뼈 분할 방법 (Bone Segmentation Method of Visible Human using Multimodal Registration)

  • 이호;김동성;강흥식
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.719-726
    • /
    • 2003
  • 본 논문에서는 Visible Human 컬러 단면 영상에서 인접한 지방 영역과 색상 특성이 유사하여 구별이 매우 힘든 뼈 영역을 분할하기 위해 다중 모달 정합 방법을 제안한다. 뼈와 그 인접영역의 구별이 뚜렷한 CT 영상에서 뼈를 분할하고 두 영상의 정합을 이용하여 컬러 영상에서 최종 뼈 분할을 수행한다. CT 영상에서 뼈의 분할 방법은 임계값 기반 방법을 사용하였고, 정합은 두 영상에서 신체 부위를 임계값 기반의 방법을 사용하여 분할된 객체들의 경계를 상호 상관관계(cross-correlation)방법을 사용하여 수행하였다. 제안된 방법은 Visible Human 컬러 단면 영상 중에 뼈와 인접 지방이 유사하여 그 분할이 어려운 머리부위와 다리부위에 적용하여 고무적인 결과론 얻었다.

의료영상 콘텐츠의 뇌 MR영상 반자동 영역 분할 알고리즘 (Brain MRI Semi-Automatic Segmentation Algorithm for Medical Image Contents)

  • 김신홍
    • 한국콘텐츠학회논문지
    • /
    • 제5권3호
    • /
    • pp.45-51
    • /
    • 2005
  • 본 논문은 뇌의 축상면에 대하여 촬영된 양성자 밀도영상과 T2 강조 영상을 대상으로 이루어진다. 이러한 영상 중 뇌 위축을 보이지 않는 정상인과 뇌 위축을 보이는 비정상인의 대뇌 영상으로부터 백질, 회백질, 뇌척수액을 분리하고, 분리된 조직의 체적을 자동으로 계산할 수 있는 알고리즘을 개발하였다. 이렇게 개발된 알고리즘을 바탕으로 계산된 각 조직의 체적 값과 디지털화된 영상의 헤더 분석을 통해 얻어진 각종 정보를 바탕으로 환자의 성별, 연령별로 결과 값을 세분화하여 데이터베이스로 구성하게 되며 수집된 각종 데이터를 분석 및 통계 처리하여 정상인과 비정상인을 판단 할 수 있는 조기진단 알고리즘을 최종적으로 완성하게 된다. 이 결과는 알츠하이머 환자를 쉽게 구별 할 수 가 있으며, 알츠하이머등 뇌질환의 조기 진단에 대한 정확한 보조진단 기반을 마련하는데 목적이 있다.

  • PDF

MDCT에서 Curved MPR을 이용한 효과적인 영상진단 (The Effective Image Diagnosis Using Curved MPR from MDCT)

  • 송종남;장영일
    • 대한디지털의료영상학회논문지
    • /
    • 제12권2호
    • /
    • pp.139-143
    • /
    • 2010
  • Two-dimensional(2D) images like Multi Planar Reconstruction(MPR) Image or Maximum Intensity Projection(MIP) were used for the purpose of diagnosis, but MPR image's quality were limited due to its superior limit of Z-axis ability to produce permitted radiation exposure virtuous in the permitted time limit from the existing Spiral CT. However, in company with the development of the Multi Detector Computed Tomography(MDCT), we were able to get the Data with the equal amount of Voxel, also get varied reconstructions as in the aspect of our needs. This present study propose a reconstruction technique which is to extract a field using Region of interest(ROI) segmentation method for improvement of the quality of the medical image and after that reconstruct the concerned part using the four-directed symmetry method of the oval, than using the reconstructed data, reorganize the image by using the Curved MPR method. If current proposed method is used, it is highly effective because of its ability to accurately display the disease concerned part, which will reduce the decoding time and also effectively provide information based on the accuracy of the decode.

  • PDF

의료영상의 질환인식 (Recognition of Disease in Medical Image)

  • 신승수;이상복;조용환
    • 한국콘텐츠학회논문지
    • /
    • 제1권1호
    • /
    • pp.8-14
    • /
    • 2001
  • 본 논문에서는 의료영상에서 특정 장기를 추출하여 질환 부위를 인식하는 알고리즘을 제안한다. 의료영상이 추출되어진 장기 부위에서 질환을 인식하기 위하여 단일 신경회로망을 이용하면 신경회로망의 학습 능력과 일반화 능력이 한정적이므로 성능개선에 많은 문제가 있다. 따라서 추출된 장기로부터 질환부위를 인식하는 것은 신경회로망을 복합적인 방법, 즉 RBF (Radial Basis Function), BP (Back Propagation)로 구성하여 단일 신경회로망의 단점을 극복하였다. 본 논문에서 제안하는 알고리즘은 입력 의료영상의 다양한 형태 변화에 적응력이 뛰어남을 실험결과로 알 수 있었다. 그리고, 전체 알고리즘의 수행시간이 장기추출 알고리즘을 포함하여 일반적으로 10초 이내에 수행됨을 실험 결과 알 수 있었다. 제안된 알고리즘은 실시간으로 의료영상의 질환부위를 인식하여 판별 자동화를 통해 원격의료에 사용 되어 질 수 있다.

  • PDF

퍼지 클러스터링을 이용한 다중 스펙트럼 자기공명영상의 분할 (Segmentation of Multispectral MRI Using Fuzzy Clustering)

  • 윤옥경;김현순;곽동민;김범수;김동휘;변우목;박길흠
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권4호
    • /
    • pp.333-338
    • /
    • 2000
  • 본 논문에서는 T1 강조영상, T2 강조 영상 그리고 PD의 영상의 특징을 상호 보완적으로 이용한 자동적인 영상 분할법을 제안한다. 제안한 분할 알고리듬은 3단계로 이루어지는데, 첫 단계에서는 PD 영상으로부터 대뇌 마스크를 획득한 후, T1과 T2, PD의 입력 영상에 대뇌 마스크를 씌워 각각의 대뇌 영상을 추출하고, 둘째 단계에서는 대뇌 내부 조직에 해당하는 두드러진 클러스터(outstanding cluster)를 3차원 클러스터들 중에서 선택한다. 3차원 클러스터는 최적스케일 영상(optimal scale image)으로 이루어지는 3차원 공간상에서 화소가 밀집된 봉우리들을 교집합해서 생성되는 클러스터로 결정한다. 최적스케일 영상은 각 2타원 히스토그램에 스케일 스페이스 필터링을 적용시키고 그래프(graph) 구조를 검색하여 2차원 히스토그램의 모양을 가장 잘 나타내는 봉우리(peak) 영상을 최적 스케일 영상으로 선택한다. 마지막 단계에서는 앞에서 찾은 두드러진 클러스터의 중심값을 FCM 알고리듬의 초기중심 값으로 두고, FCM 알고리듬을 이용하여 대뇌 영상을 분할한다. 제안한 분할 알고리듬은 정확한 클러스터의 중심값을 계산함으로 초기 값을 영향을 많이 받는 FCM 알고리듬의 단점을 보완하였고 다중 스펙트럼 영상의 특성을 조합하여 분할에 이용함으로 단일 스펙트럼 영상만을 이용하는 방법보다 향상된 결과를 얻을 수 있었다.

  • PDF

자동 치아 분할용 종단 간 시스템 개발을 위한 선결 연구: 딥러닝 기반 기준점 설정 알고리즘 (Prerequisite Research for the Development of an End-to-End System for Automatic Tooth Segmentation: A Deep Learning-Based Reference Point Setting Algorithm)

  • 서경덕;이세나;진용규;양세정
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권5호
    • /
    • pp.346-353
    • /
    • 2023
  • In this paper, we propose an innovative approach that leverages deep learning to find optimal reference points for achieving precise tooth segmentation in three-dimensional tooth point cloud data. A dataset consisting of 350 aligned maxillary and mandibular cloud data was used as input, and both end coordinates of individual teeth were used as correct answers. A two-dimensional image was created by projecting the rendered point cloud data along the Z-axis, where an image of individual teeth was created using an object detection algorithm. The proposed algorithm is designed by adding various modules to the Unet model that allow effective learning of a narrow range, and detects both end points of the tooth using the generated tooth image. In the evaluation using DSC, Euclid distance, and MAE as indicators, we achieved superior performance compared to other Unet-based models. In future research, we will develop an algorithm to find the reference point of the point cloud by back-projecting the reference point detected in the image in three dimensions, and based on this, we will develop an algorithm to divide the teeth individually in the point cloud through image processing techniques.

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).