• Title/Summary/Keyword: Medical 3D printing

Search Result 124, Processing Time 0.026 seconds

Implications of 3-Dimensional Printed Spinal Implants on the Outcomes in Spine Surgery

  • Fiani, Brian;Newhouse, Alexander;Cathel, Alessandra;Sarhadi, Kasra;Soula, Marisol
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.495-504
    • /
    • 2021
  • Three-dimensional printing (3DP) applications possess substantial versatility within surgical applications, such as complex reconstructive surgeries and for the use of surgical resection guides. The capability of constructing an implant from a series of radiographic images to provide personalized anatomical fit is what makes 3D printed implants most appealing to surgeons. Our objective is to describe the process of integration of 3DP implants into the operating room for spinal surgery, summarize the outcomes of using 3DP implants in spinal surgery, and discuss the limitations and safety concerns during pre-operative consideration. 3DP allows for customized, light weight, and geometrically complex functional implants in spinal surgery in cases of decompression, tumor, and fusion. However, there are limitations such as the cost of the technology which is prohibitive to many hospitals. The novelty of this approach implies that the quantity of longitudinal studies is limited and our understanding of how the human body responds long term to these implants is still unclear. Although it has given surgeons the ability to improve outcomes, surgical strategies, and patient recovery, there is a need for prospective studies to follow the safety and efficacy of the usage of 3D printed implants in spine surgery.

Developing Customized Phantom for Korean Bone Density Using 3D Printing (3D 프린팅을 이용한 한국인 골밀도 맞춤 팬텀 개발)

  • Lee, Junho;Choi, Kwan-Yong;Choi, Jae-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.223-229
    • /
    • 2019
  • In order to reduce the radiation exposure dose of the patient and to obtain accurate diagnosis results, the quality control of the diagnostic radiation generator must be conducted periodically In particular, bone density test equipment could be influenced by many factors, and it is far more important because inaccurate measurement would eventually affect the result value. However, the cross-correction phantom of DXA equipment is poorly penetrated due to lack of awareness of the industry and the high cost. Therefore, this study developed a BMD phantom using a 3D printer and Korean BMD phantom with low cost by cross analyzing Korean BMD value from The Korean National Health and Nutrition Examination Survey and evaluated it. The L1, L2, and L3 BMD values of phantoms produced with the 3D printer were measured to be $0.887{\pm}0.006g/cm^2$, $0.927{\pm}0.006g/cm^2$, and $0.960{\pm}0.005g/cm^2$, at 215 mm height and $0.882{\pm}0.011g/cm^2$, $0.914{\pm}0.005g/cm^2$, $0.933{\pm}0.008g/cm^2$ at 155 mm height displaying statistically significant relevance. The result suggests that a proper quality control and cross calibration of DXA device be possible and expected to be an essential data for various medical phantom manufacture development using 3D printer.

Proposal of finger splint design using design guidelines to reflect user requirements - Using FDM 3D printing technology - (사용자의 요구조건을 반영 할 수 있는 디자인 가이드라인을 이용한 손가락 보조기 디자인 제안 - FDM 방식의 3D 프린팅 기술을 이용하여 -)

  • Shin, I Yeol;Oh, Kwang Myung
    • Design Convergence Study
    • /
    • v.18 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • General finger splint manufactured and sold domestically could have been of great help to patients with disabilities due to damage to the body's. However, it reminded the wearer of his disability that he wanted to hide. This has had a negative effect on the psychological side of self-absorption and depression. If this avoids or rejects wearing, the role of ancillary rehabilitation is lost. This does not meet the user's requirements. Thus, in this study, 3D printing was used to better reflect user requirements. Next, the study examined existing prior studies to identify the characteristics and criteria of each study. It also examined medical finger aids that were being sold in the auxiliary device market. The assessment criteria were derived by compiling and interpreting user surveys of each finger splint device. Based on the evaluation criteria derived, the design guidelines for finger splint were presented using FDM-style 3D printers. Finally, we proposed a finger splint design according to the proposed design guideline.

Quality Control of Dose Calibrator using 3D Printery (3D 프린터를 이용한 Dose Calibrator의 품질관리)

  • Ryu, Chan-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.307-312
    • /
    • 2021
  • In nuclear medicine, radioactive isotope tracers are administered to the human body to obtain and evaluate disease morphological information and biological function information. Dose calibrator is a device used to measure the radioactivity of a single nuclide in medical institutions. Administration of the correct dose to the human body acts as an important factor in diagnosis and treatment, and measurement through a dose calibrator before administration is the most important factor. Dose calibrator performs daily quality control after installation in each medical institution. Quality control is a means of guaranteeing quality control after installation, and is essential for improving the quality of treatment and promoting patient safety. Therefore, accurate and standardized performance evaluation methods should be established. In this study, 3D printing was used for quantitative evaluation of quality control by increasing the accuracy and standardization of quality control. When the 3D printer was installed and reproducibility was tested, the error range of the expected value and reading value decreased by 0.302% in the F-18 nuclide and 0.09% in the 99mTc-pertechnate nuclide than when the 3D printer was installed. The error rate for other nuclides was also found to have a low error rate for reproducibility tests when 3D printing was installed.

Full mouth rehabilitation of a patient with severe periodontitis using immediate loading after computer aided flapless implant surgery (심한 치주질환을 가진 환자에서 computer aided flapless surgery와 즉시 부하를 통한 전악 구강 회복 증례)

  • Kang, Seong hun;Choi, Yeon jo;Ryu, Jae jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.1
    • /
    • pp.46-55
    • /
    • 2018
  • Oral rehabilitation of a patient having severe periodontitis with alveolar bone resorption and periodontal inflammation presents a challenge to clinicians. However, if appropriate implant placement according to the bone shape is selected, unnecessary bone grafting or soft tissue surgery can be minimized. In recent years, using cone beam CT and software, it has become possible to operate the planned position with the surgical guide made with 3D printing technology. This case was a 70 years old female patient who required total extraction of teeth due to severe periodontitis and performed a full-mouth rehabilitation with an implant - supported fixed prosthesis. During the surgery, the implant was placed in a flapless manner through a surgical guide. Immediate loading of the temporary prosthesis made by CAD/CAM method before surgery was done. Since then, we have produced customized abutments and zirconia prostheses, and have reported satisfactory aesthetic and functional recovery.

Evaluation of 3D Printing Filaments for Radiation Shielding using High Density Polyethylene and Bismuth (고밀도 폴리에틸렌과 비스무트를 이용한 3D 프린팅용 방사선 복합필라멘트 개발 및 차폐능력 평가)

  • Park, Ki-Seok;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.233-240
    • /
    • 2022
  • Research on the presence or absence of radiation shielding for FDM-type filaments has recently begun to be studied, but filaments with shielding capabilities are not sold in Korea, and not studies yet. Therefore, in this research, we will use HDPE (High Density Polyethylene) as a base material, select bismuth as a reinforcing material to manufacture a composite filament, evaluate the shielding ability, and provide basic data for the development of a radiation shielding composite material using 3D printing.A filament is produced by mixing Bismuth with an effective atomic number 83 with HDPE of PE series and adjusting the content of Bismuth to 20% wt, 30% wt, 40% wt. Compounded filaments were evaluated for their physical properties and shielding capabilities by ASTM evaluation methods. As the bismuth content increases, the density, weight, and tensile strength increase, and the shielding capacity is confirmed to be excellent. As a result of the radiation shielding capacity evaluation, it was confirmed that HDPE (80%) + Bi (20%) showed a shielding rate of 82% at 60 kV and a shielding rate of up to 94% or more at 40% bismuth content. In this study, we confirmed that it was possible to produce a radiation shield that is lighter than the metal particle-containing filaments. Furthermore, that have been shield radiation by using HDPE + Bi filaments, and radiation in the medical and radiation industries. The possibility of using it as a shielding complex was confirmed.

Creating a digitized database of maxillofacial prostheses (obturators): A pilot study

  • Elbashti, Mahmoud;Hattori, Mariko;Sumita, Yuka;Aswehlee, Amel;Yoshi, Shigen;Taniguchi, Hisashi
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.219-223
    • /
    • 2016
  • PURPOSE. This study aimed to create a digitized database of fabricated obturators to be kept for patients' potential emergency needs. MATERIALS AND METHODS. A chairside intraoral scanner was used to scan the surfaces of an acrylic resin obturator. The scanned data was recorded and saved as a single standard tessellation language file using a three-dimensional modeling software. A simulated obturator model was manufactured using fused deposition modeling technique in a three-dimensional printer. RESULTS. The entire obturator was successfully scanned regardless of its structural complexity, modeled as three-dimensional data, and stored in the digital system of our clinic at a relatively small size (19.6 MB). A simulated obturator model was then accurately manufactured from these data. CONCLUSION. This study provides a proof-of-concept for the use of digital technology to create a digitized database of obturators for edentulous maxillectomy patients.

Gingival mask using 3D Printer for a patient with palatally installed implant in maxillary anterior area (구개측으로 식립된 상악 전치부 임플란트 환자에서 3D 프린터를 이용한 Gingival mask 수복 증례)

  • Jeong, Kyong-Sik;Kim, Na-Hong;Kim, Sung-Yong;Lee, Yong-Sang
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.363-368
    • /
    • 2020
  • The prosthesis of the implant installed in inappropriate positions presents aesthetic and functional problems. If the implants are placed in the wrong position, re-implantation is often limited. There are surgical and non-surgical methods for resolving complications without re-implantation. The surgical costs, healing time, discomfort and unpredictability make this choice unpopular. On the other hand, a gingival mask has the advantage of solving complications quickly and simply. The patient was a 80-year-old male with palatally installed implant in maxillary anterior region and dissatisfied with his unesthetic philtrum and food impaction between the upper lip and the prosthesis. It was difficult to predict the prognosis of surgical operation, and the patient wanted treatment economically and physically burdenless because of his age and financial situation. Thus, the gingival mask was planned and the results were satisfactory.

Customized 3D Printed Bolus for Breast Reconstruction for Modified Radical Mastectomy (MRM)

  • Ha, Jin-Suk;Jung, Jae Hong;Kim, Min-Joo;Jeon, Mi Jin;Jang, Won Suk;Cho, Yoon Jin;Lee, Ik Jae;Kim, Jun Won;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.196-202
    • /
    • 2016
  • We aim to develop the breast bolus by using a 3D printer to minimize the air-gap, and compare it to commercial bolus used for patients undergoing reconstruction in breast cancer. The bolus-shaped region of interests (ROIs) were contoured at the surface of the intensity-modulated radiation therapy (IMRT) thorax phantom with 5 mm thickness, after which the digital imaging and communications in mdicine (DICOM)-RT structure file was acquired. The intensity-modulated radiation therapy (Tomo-IMRT) and direct mode (Tomo-Direct) using the Tomotherapy were established. The 13 point doses were measured by optically stimulated luminescence (OSLD) dosimetry. The measurement data was analyzed to quantitatively evaluate the applicability of 3D bolus. The percentage change of mean measured dose between the commercial bolus and 3D-bolus was 2.3% and 0.7% for the Tomo-direct and Tomo-IMRT, respectively. For air-gap, range of the commercial bolus was from 0.8 cm to 1.5 cm at the periphery of the right breast. In contrast, the 3D-bolus have occurred the air-gap (i.e., 0 cm). The 3D-bolus for radiation therapy reduces the air-gap on irregular body surface that believed to help in accurate and precise radiation therapy due to better property of adhesion.

Clinical outcomes of a low-cost single-channel myoelectric-interface three-dimensional hand prosthesis

  • Ku, Inhoe;Lee, Gordon K.;Park, Chan Yong;Lee, Janghyuk;Jeong, Euicheol
    • Archives of Plastic Surgery
    • /
    • v.46 no.4
    • /
    • pp.303-310
    • /
    • 2019
  • Background Prosthetic hands with a myoelectric interface have recently received interest within the broader category of hand prostheses, but their high cost is a major barrier to use. Modern three-dimensional (3D) printing technology has enabled more widespread development and cost-effectiveness in the field of prostheses. The objective of the present study was to evaluate the clinical impact of a low-cost 3D-printed myoelectric-interface prosthetic hand on patients' daily life. Methods A prospective review of all upper-arm transradial amputation amputees who used 3D-printed myoelectric interface prostheses (Mark V) between January 2016 and August 2017 was conducted. The functional outcomes of prosthesis usage over a 3-month follow-up period were measured using a validated method (Orthotics Prosthetics User Survey-Upper Extremity Functional Status [OPUS-UEFS]). In addition, the correlation between the length of the amputated radius and changes in OPUS-UEFS scores was analyzed. Results Ten patients were included in the study. After use of the 3D-printed myoelectric single electromyography channel prosthesis for 3 months, the average OPUS-UEFS score significantly increased from 45.50 to 60.10. The Spearman correlation coefficient (r) of the correlation between radius length and OPUS-UEFS at the 3rd month of prosthetic use was 0.815. Conclusions This low-cost 3D-printed myoelectric-interface prosthetic hand with a single reliable myoelectrical signal shows the potential to positively impact amputees' quality of life through daily usage. The emergence of a low-cost 3D-printed myoelectric prosthesis could lead to new market trends, with such a device gaining popularity via reduced production costs and increased market demand.