• Title/Summary/Keyword: Medicago sativa L

Search Result 126, Processing Time 0.031 seconds

Optimization of O/W Emulsion with Natural Surfactant Extracted from Medicago sativa L. using CCD-RSM (CCD-RSM을 이용한 알팔파 추출물인 천연계면활성제가 포함된 O/W 유화액의 최적화)

  • Seheum Hong;Jiachen Hou;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.137-143
    • /
    • 2023
  • In this study, natural surfactants were extracted from Medicago sativa L. The O/W emulsification processes with the extracted natural surfactants were optimized using central composite design model-response surface methodology (CCD-RSM) and a 95% confidence interval was used to confirm the reasonableness of the optimization. Herein, independent parameters were the ratio of saponins to total surfactant (P), amount of surfactant (W), and emulsification speed (R), whereas the reaction parameters were the emulsion stability index (ESI), mean droplet size (MDS), and viscosity (V). Using the multiple reaction, the optimal conditions for the ratio of saponins to total surfactant, amount of surfactant, and emulsification speed for O/W emulsification were 49.5%, 9.1 wt%, and 6559.5 rpm, respectively. Under these optimal conditions, the expected values of ESI, MDS, and V as the reaction parameters were 89.9%, 1058.4 nm, and 1522.5 cP, respectively. The values of ESI, MDS, and V from these expected values were 88.7%, 1026.4 nm, and 1486.5 cP, respectively, and the average experimental error for validating the accuracy was about 2.3 (± 0.4)%. Therefore, it was possible to design an optimization process for evaluating the O/W emulsion process with Medicago sativa L. using CCD-RSM.

Changes in Protein Contents and Activities of Proteolytic Enzymes in Medicago sativa During Regrowth

  • Kim, Tae-Hwan
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.357-363
    • /
    • 1994
  • An expreiment with non-nodulating alfalfa (Medicago sativa L.) plants was designed to investigate the changes in protein contents and the activities of proteolytic enzymes during a regrowth period of 24 d. Shoot removal caused a depression of root growth and significantly reduced protein contents in roots. An initial decline of root proteins for the first 10 d was followed by a rapid recovery from d 11 to 24. The major increase of regrowing shoot weight occurred also from d 11. The activities of aminopeptidase and endoprotease slightly decreased in regrowing leaves, while protein contents remains stable after shoot removal. Roots exhibited source behaviour with a rapid increase of endoprotease activities for the first 10 d of regrowth; about a 370% increase over the initial level was observed. Increase in endoprotease activity in roots coincided with the time of protein remobilization after shoot removal, indicating the important role of endoproteases in protein degradation.

  • PDF

Changes in Nutrients Uptake and Dry Matter Yield of Orchardgrass ( Dactylis glomerata L. ) and Alfalfa ( medicago sativa L. ) by Gypsum Application. (석고시용이 Orchargrass ( Dactylis glomerata L. ) 와 Alfalfa ( Medicago sativa L. )의 양분흡수 및 목초수량에 미치는 영향)

  • 윤순강;송기웅;김재규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.3
    • /
    • pp.141-146
    • /
    • 1990
  • Changes in dry matter yield, crude components, nutrients uptake($P_2O_5$, $K_2O$, CaO, MgO) and sulphur containing amino acid(cysteine, methionine) of orchardgrass(Dacty1is glomerata. L) and alfalfa(A4edicago sativa. L) by gypsum application(as sulphur source, 0, 2. 5, 10, 20kg SIlOa) were investigated to understand the effect of sulphur on herbage production in pasture, which was established in 1987 as means of hand broadcasting. The effect of gypsum on dry matter yield at different cutting times during growing seasons has not been found both in orchardgrass and in alfalfa, but in respect to annual total dry matter yield there were increment in herbage yield (P<0.05) of alfalfa at 5, 10, 20kg SIlOa in 1989 and the amounts of sulphur taken up in herbage slightly increased according to the rates of gypsum application. Maximum apparent recovery of sulphur was 7.55% at 2kg SIlOa in orchardgrass and was 17.8% at 5kg S/lOa in alfalfa. There were no any great differences in the content of crude components of both species and this trend was similar with the mineral contents of orchardgrass. But in alfalfa, the amounts of $K_2O$, CaO, and $P_2O_5$ taken up were increased by gypsum application and the increment in the amounts of minerals taken up in herbage at 20kg SIlOa were 14.9 of $K_2O$, 9.1 of CaO, and 2.5kgIlOa of $P_2O_5$ as compared to those of at untreated plot. Cysteine and methionine were not influenced by gypsum applicaton not only in orchardgrass but also cysteine in alfalfa, however, the content of methionine in alfalfa was slightly increased at 2, 5, lOkg SIlOa and at 20kg SIlOa was reverse.

  • PDF

Phytotoxic Effect of Lettuce (Lactuca sativa L.) Leaf Extract on Seedling Growth of Crops and Weeds

  • Chon, Sang-Uk;Choi, Seong-Kyu
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.69-76
    • /
    • 2004
  • Lettuce (Lactuca sativa L.) is known to contain water-soluble substances that are biologically active. Aqueous or methanol extracts and residues from leaves of lettuce plants were assayed to determine their allelopathic effects, and the causative allelochemicals from fractions were quantified by means of HPLC analysis and bioassayed. Extracts from oven-dried leaf samples were more phytotoxic than those from freeze-dried samples. Leaf extracts of 40 g L$^{-1}$ were completely inhibitory on root growth of alfalfa (Medicago sativa L.), while root growths of barley (Hordeum vulgare L.) and soybean (Glycine max L.) were less sensitive. Early seedling growth of both alfalfa and barnyard grass (Echinochloa crus-galli) was significantly reduced by methanol leaf extracts. The major allelopathic substances analyzed by HPLC were coumarin, trans-cinnamic acid, o-coumaric acid, p-coumaric acid and chlorogenic acid. Of them p-coumaric acid was found as the greatest amount (8.9 mg 100 g$^{-1}$ ) in the EtOAc fraction; only coumarin was found in all the fractions. Hexane and EtOAc fractions of L. sativa reduced alfalfa root growth more than did BuOH and water fractions. These results suggest that lettuce had potent herbicidal activity, and that its activity differed depending on type and amount of causative compounds by fraction.

  • PDF

Comparison of Agrobacterium-mediated of Five Alfalfa (Medicago sativa L.) Cultivars Using the GUS Reporter Gene

  • Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Cha, Joon-Yung;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.187-192
    • /
    • 2014
  • Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world. It has been demanded to establish the efficient transformation system in commercial varieties of alfalfa for forage molecular breeding and production of varieties possessing new characteristics. To approach this, genetic transformation techniques have been developed and modified. This work was performed to establish conditions for effective transformation of commercial alfalfa cultivars, Xinjiang Daye, ABT405, Vernal, Wintergreen and Alfagraze. GUS gene was used as a transgene and cotyledon and hypocotyl as a source of explants. Transformation efficiencies differed from 0 to 7.9% among alfalfa cultivars. Highest transformation efficiencies were observed in the cultivar Xinjiang Daye. The integration and expression of the transgenes in the transformed alfalfa plants was confirmed by polymerase chain reaction (PCR) and histochemical GUS assay. These data demonstrate highly efficient Agrobacterium transformation of diverse alfalfa cultivars Xinjiang Daye, which enables routine production of transgenic alfalfa plants.

Aluminum Stress Inhibits Root Growth and Alters Physiological and Antioxidant Enzyme Responses in Alfalfa (Medicago sativa L.) Roots (알팔파 뿌리에 있어서 알루미늄 스트레스 처리에 따른 뿌리 생장 저해와 생리 및 항산화 반응의 변화)

  • Min, Chang-Woo;Khan, Inam;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.298-302
    • /
    • 2019
  • Acidic soil significantly reduces crop productivity mainly due to aluminum (Al) toxicity. Alfalfa (Medicago sativa L.) roots were exposed to aluminum stress (Al3+) in calcium chloride (CaCl2) solution (pH4.5) and root growth, physiological and antioxidant enzyme responses were investigated. The root growth (length) was significantly inhibited after 48 h of aluminum stress imposition. Histochemical staining with hematoxylin indicated significant accumulation of aluminum in Al stress-treated root tissues. Histochemical assay were also performed to detect superoxide anion, hydrogen peroxide and lipid peroxidation, which were found to be more in root tissues treated with higher aluminum concentrations. The enzymatic activity of CAT, POD and GR in root tissues was slightly increased after Al stress treatment. The result suggests that Al stress alters root growth in alfalfa and induces reactive oxygen species (ROS) production, and demonstrates that antioxidant enzymes involved in detoxification of Al-mediated oxidative stress.

Effects of Bacillus spp. On Growth of Alfalfa ( Medicago sativa L. ) (Bacillus속이 Alfalfa ( Medicago sativa L. ) 의 생장에 미치는 영향)

  • Choi, Ki-Chun;Youn, Chang;Chun, Woo-Bock
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.239-248
    • /
    • 1997
  • This study was conducted to investigate the effects of antagonistic microorganisms, Bacillus spp., on growth of alfalfa(Medicag0 sativa L.) in repeated cultivation soil(RCS) and unrepeated cultivation soil(URCS). Alfalfa was established by seeding into pots 12 cm in diameter and 9 cm in depth containing 1 : 1 mixture of soil and vermiculite with antagonistic bacteria and pathogenic fungi. The growth experiment of alfalfa was conducted in pots in a vinyl house. The bacteria used in this study were Bacillus subtilis and hsants. B. subtilis was isolated and identified 60m forage rhizosphere soil and hsants isolated through cell fusion fiom B. subtilis 101 and B. thuringiensis. B. subtilis was named B. subtilis 101 and hsants named F -3 and F -8. From dark culture experimenf alfalfa was longer lived in treated soil with antagonistic bacteria than that in non-treated soil, and longer lived in URCS than that in RCS. However, alfalfa was shorter lived in RCS and URCS than that in autoclaved RCS. The number of leaves of alfalfa were positively affected by the inoculation of the antagonistic bacteria in both RCS and URCS. Dry weight of shoot and root was increased by the inoculation of the antagonistic bacteria(P< 0.05). However, the growth of alfalfa was decreased by the inoculation of the pathogenic hngi both RCS apd URCS.

  • PDF

A Multiplex PCR Method for the Detection of Genetically Modified Alfalfa (Medicago sativa L.) and Analysis of Feral Alfalfa in South Korea

  • Choi, Wonkyun;Kim, Il Ryong;Lim, Hye Song;Lee, Jung Ro
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.83-89
    • /
    • 2020
  • Methods for detecting the presence of genetically modified (GM) crops are evolving to comply with legislation and to enhance monitoring by biotechnology companies and regulators. In order to cover a broad range of detection methods for a new GM crop, conventional multiplex PCR methods are required. Based on the genetic information on three GM alfalfa varieties (J101, J163, and KK179), which were recently approved in South Korea, we developed a fast, reliable, and highly specific multiplex polymerase chain reaction (PCR) method with basic PCR equipment and inexpensive reagents. To validate and verify the newly developed multiplex PCR method, we applied a limit of detection assay and random reference material analysis. We also monitored the unintentional environmental release of GM alfalfa in South Korea by performing the multiplex PCR analysis with 91 feral alfalfa specimens collected from 2000 to 2018. Our methodology is a sensitive, simple, quick, and inexpensive tool for detecting and identifying three GM alfalfa varieties.