• Title/Summary/Keyword: Mediated electrochemical oxidation

Search Result 13, Processing Time 0.025 seconds

Electro-oxidation Kinetics of Cerium(III) in Nitric Acid Using Divided Electrochemical Cell for Application in the Mediated Electrochemical Oxidation of Phenol

  • Matheswaran, Manickam;Balaji, Subramanian;Chung, Sang-Joon;Moon, Il-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1329-1334
    • /
    • 2007
  • The electrochemical oxidation of cerium(III) was carried out using divided and undivided electrochemical cells in nitric acid medium. It was found that divided cell with Nafion 324 as the separator gave good conversion yield with high current efficiency compared to the undivided cell. The efficiency of the divided electrochemical cell was further optimized in terms of cell voltage, temperature, flow rate of solution recirculation, concentrations of Ce(III) and nitric acid. The better conditions for 1 M Ce(III) in 3 M nitric acid were found to be 2.5 V, 363 K and 100 mL/min recirculation flow rate based on the current efficiency under the experimental conditions investigated. The Ce(IV) oxidant produced was used as a mediator for the mineralization of phenol. The mineralization efficiency of the cerium mediated electrochemical oxidation was found rapid and higher compared to the direct electrochemical oxidation based on CO2 evolution under the same conditions.

Mediated Electrochemical Oxidation of High Molecular Weight PEGs by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems (Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 고분자량 폴리에텔렌글리콜류의 매개전해산화)

  • Park, Seung-Cho;Kim, Ik-Seong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.206-211
    • /
    • 2005
  • Mediated electrochemical oxidation (MEO) of polyethylene glycols (PEGs) of molecular weight of 1000, 4000 and 20000, was carried out on both platinum (Pt) and titanium-iridium electrodes in 8.0 M nitric acid solution containing 0.5 M Fe(II) and Co(II) ion. The electrochemical parameters such as current densities, kinds of electrode, electrolyte concentration and removal efficiency were investigated in both Fe(III)/Fe(II) and Co(III)/Co(II) redox systems. The PEGs was decomposed into carbon dioxide by MEO in Fe(III)/Fe(II) and Co(III)/Co(II) redox system during 180 min and 210 min at the current density of $0.67A/cm^2$ on the Pt electrode. Removal efficiency of PEGs by MEO was better in Co(III)/Co(II) redox system than Fe(III)/Fe(II) redox system, indicating mediated electrochemical removal efficiency was 100%.

Recovery of Silver from the Spent Solution Generated from Electrochemical Oxidation of Radioactive Wastes (放射性 폐기물의 전기화학적 분해 폐액으로부터 銀의 回收)

  • 문제권;정종훈;오원진;이일희
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.22-28
    • /
    • 2001
  • Recovery of silver in the spent solution generated from MEO(Mediated Electrochemical Oxidation) process, which is a process to decompose radioactive organic mixed wastes at low temperature, was performed using chemical method. Silver nitrate in 5M nitric acid solution could be completely recovered as AgCl by using 1% excess of the stoichiometric HCl equivalents. Then, AgCl was transformed to Ag metal by reduction reaction with hydrogen peroxide under alkaline media. The optimum pH for the reduction to silver metal was found to be in the range of 12.8∼13.0.

  • PDF

A Kinetic Investigation of Ethanol Oxidation on a Nickel Oxyhydroxide Electrode

  • Danaee, I.;Jafarian, M.;Sharafi, M.;Gobal, F.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline solutions where the methods of cyclic voltammetry (CV) and chronoamperometry (CA) were employed. In CV studies, in the presence of ethanol, an increase in the current for the oxidation of nickel hydroxide is followed by a decrease in the corresponding cathodic current. This suggests that the oxidation of ethanol is being catalysed through mediated electron transfer across the nickel hydroxide layer comprising of nickel ions of various valence states. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of ethanol was found to be $1{\times}10^7cm^2s^{-1}$.

Continuous Mediated Electrochemical Oxidation of Ethylene Glycol by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems (Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 에텔렌글리콜의 연속 매개전해 산화)

  • Kim, Ik-Seong;Park, Seung-Cho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.635-640
    • /
    • 2005
  • Mediated electrochemical oxidation (MEO) is an aqueous process which oxidizes organics electrochemicallly at low temperatures and pressures. The useful process can be used to treat mixed wastes containing hazardous organics. This paper have studied MEO of ethylene glycol (EG) in nitric acids by Fe(III)/Fe(II) and Co(III)/Co(II) system. It investigated current density, supporting electrolyte concentration, hydraulic retention time, removal efficiency of EG by MEO. Removal efficiency of EG by MEO was superior in Co(III)/Co(II) redox system than Fe(III)/Fe(II) redox system, where MEO removal efficiency was 100 percent. In case of EG, the reactions were fast and good yields of carbon dioxide formation was observed.

Destruction of Spent Organic ion Exchange Resins by Ag(II)-Mediated Electrochemical Oxidation (Ag(II)매개산화에 의한 폐 유기이온교환수지의 분해)

  • Choi Wang-Kyu;Nam Hyeog;Park Sang-Yoon;Lee Kune-Woo;Oh Won-Zin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.183-189
    • /
    • 1999
  • A study on the destruction of organic cation and anion exchange resins by electro-generated Ag(II) as a mediator was carried out to develop the ambient-temperature aqueous process, known as Ag(II)-mediated electro-chemical oxidation (MEO) process, for the treatment of a large quantity of spent organic ion exchange resins as the low and Intermediated-level radioactive wastes arising from the operation, maintenance and repairs of nuclear facilities. The effects of controllable process parameters such as applied current density, temperature, and nitric acid concentration on the MEO of organic ion exchange resins were investigated. The cation exchange resin was completely decomposed to $CO_2$. The current efficiency increased with a decrease in applied current density while nitric acid concentration and temperature on the MEO of cation exchange resin did not affect the MEO. On the other hand, anion exchange resins were decomposed to CO and $CO_2$. The ultimate conversion to CO was about $10\%$ regardless of temperature. The destruction efficiencies to $CO_2$ were dependent upon temperature and the effective destruction of anion exchange resin could be obtained above $60^{\circ}C$.

The Electrochemical Studies of Two Osmium Redox Polymer Films and Their Application for Multi-Detecting Biosensor (전기화학적인 방법을 이용한 두 개의 오스뮴 고분자 막의 고정화 및 다중 검출 바이오센서에 관한 연구)

  • Tae, Gun-Sik;Kim, Jin-Gu;Choi, Young-Bong;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.170-175
    • /
    • 2008
  • Screen printed carbon electrodes (SPEs) modified with co-immobilized osmium-based redox polymers can be used to apply multi-detecting biosensors. In this study, we report our initial studies of multi-detecting biosensor concepts using two osmium-based redox polymers for horseradish peroxidase-mediated reduction of ${H_2}{O_2}$ coupled to glucose oxidase-mediated oxidation of glucose. We target to synthesize two osmium redox polymers of potentials use, a chloride-containing redox polymer ($E^{O'}$ + 0.520 vs. Ag/AgCl) and a methoxy-containing redox polymer $E^{O'}$ + 0.150 vs. Ag/AgCl). The former show good catalytic electrical signals with horseradish peroxidase and the latter's redox polymer is to be an effective redox mediator of glucose oxidation by glucose oxidase.

The Removal of NOx by Mediated Electrochemical Oxidation Using Ag(II) As a Mediator (Ag(II)를 매개체로 사용하는 전기화학적 매개산화에 의한 NOx 제거)

  • Lee, Min-Woo;Park, So-Jin;Lee, Kune-Woo;Choi, Wang-Kyu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • The effects of the applied current density, the $AgNO_3$ concentration, the scrubbing liquid flow rate and the NO-air mixed gas flow rate on the NO removal efficiency were investigated by using $Ag^{2+}$ mediated electrochemical oxidation (MEO). Results showed that the NO removal efficiency increased with increasing the applied current density. The effect of the $AgNO_3$ concentration on the NO removal efficiency was negligibly small in the concentration of $AgNO_3$ above 0.1 M. When the scrubbing liquid flow rate increased, the NO removal efficiency was gradually increased. On the other hands, the NO removal efficiency decreased with increasing the NO-air mixed gas flow rate. As a result of the treatment of NO-air mixed gas by using the MEO process with the optimum operating condition and the chemical absorption process using 3 M $HNO_3$ solution as a scrubbing liquid, the removal efficiency of NO and $NO_x$ was achieved as 95% and 63%, respectively.

Removal of Heavy Metal Ions by Electrocoagulation for Continuous Use of Fe2+/Fe3+-Mediated Electrochemical Oxidation Solutions

  • Jung, Youn-Su;Pyo, Myoung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.974-978
    • /
    • 2008
  • Removal of heavy metal ions ($Cd^{2+}$ and $Zn^{2+}$) by electrocoagulation (ECG) was investigated in an acidic condition, which is necessary for re-using or discharging the mediated electrochemical oxidation (MEO) media. Effects of various parameters such as electrolytes, current densities, and electrode materials were examined for a metal-contaminated MEO system using $Fe^{2+}/Fe^{3+}$ pairs as a mediator. It was found that ECG with Al electrodes is greatly affected by the presence of $Fe^{2+}$. [$Cd^{2+}$] and [$Zn^{2+}$] remain constant until [$Fe^{2+}$] reaches a certain concentration level (ca. 10 mM). This preferential removal of $Fe^{2+}$ during ECG with Al electrodes is not alleviated by controlling current densities, potential programs, and solution mixing. ECG with Fe electrodes, on the other hand, resulted in relatively fast removal of $Cd^{2+}$ and $Zn^{2+}$ under coexistence of $Fe^{2+}$, indicative of the different role between $Fe^{n+}$ generated from an electrode and $Fe^{2+}$ initially present in a solution. When ECG was performed with Fe electrodes until [$Fe^{n+}$] became the same as the concentration of initially present $Fe^{2+}$, [$Cd^{2+}$] and [$Zn^{2+}$] were reduced to one-tenth of the initial concentrations, suggesting the possibility of a continuous use of the medium for a subsequent MEO process.

Diffusion Coefficient of Ag(I) ion in the Concentrated Nitric Acid Solution (고농도 질산용액에서 Ag(I) 이온의 확산계수 측정)

  • Park Sang Yoon;Choi Wang Kyu;Lee Kune Woo;Moon Jei Kwon;Oh Won Zin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.93-97
    • /
    • 1999
  • From the anodic peak currents of cyclic voltammograms for Ag(I)/Ag(II) couple obtained with the variation of nitric acid concentration, Ag(I) concentration and solution temperature at a Pt electrode in concentrated nitric acid solutions, the diffusion coefficients of Ag(I) ion were evaluated to estimate the limiting current density of Ag(II)-mediated electrochemical oxidation (MEO) process, which has been effectively used for the complete destruction of hazardous organic materials. The results showed that, due to the water decomposition reaction which occurred simultaneously with the Ag(I) ion oxidation, background subtractions for the cyclic voltammograms were required to estimate the correct peak currents. The empirical relationship for the diffusion coefficient of Ag(I) was suggested as a function of solution viscosity and temperature.