• 제목/요약/키워드: Median Filter Residual(MFR)

검색결과 4건 처리시간 0.02초

Median Filtering Detection of Digital Images Using Pixel Gradients

  • RHEE, Kang Hyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권4호
    • /
    • pp.195-201
    • /
    • 2015
  • For median filtering (MF) detection in altered digital images, this paper presents a new feature vector that is formed from autoregressive (AR) coefficients via an AR model of the gradients between the neighboring row and column lines in an image. Subsequently, the defined 10-D feature vector is trained in a support vector machine (SVM) for MF detection among forged images. The MF classification is compared to the median filter residual (MFR) scheme that had the same 10-D feature vector. In the experiment, three kinds of test items are area under receiver operating characteristic (ROC) curve (AUC), classification ratio, and minimal average decision error. The performance is excellent for unaltered (ORI) or once-altered images, such as $3{\times}3$ average filtering (AVE3), QF=90 JPEG (JPG90), 90% down, and 110% up to scale (DN0.9 and Up1.1) images, versus $3{\times}3$ and $5{\times}5$ median filtering (MF3 and MF5, respectively) and MF3 and MF5 composite images (MF35). When the forged image was post-altered with AVE3, DN0.9, UP1.1 and JPG70 after MF3, MF5 and MF35, the performance of the proposed scheme is lower than the MFR scheme. In particular, the feature vector in this paper has a superior classification ratio compared to AVE3. However, in the measured performances with unaltered, once-altered and post-altered images versus MF3, MF5 and MF35, the resultant AUC by 'sensitivity' (TP: true positive rate) and '1-specificity' (FN: false negative rate) is achieved closer to 1. Thus, it is confirmed that the grade evaluation of the proposed scheme can be rated as 'Excellent (A)'.

디지털 영상의 픽셀값 경사도에 의한 미디언 필터링 포렌식 판정 (Forensic Decision of Median Filtering by Pixel Value's Gradients of Digital Image)

  • 이강현
    • 전자공학회논문지
    • /
    • 제52권6호
    • /
    • pp.79-84
    • /
    • 2015
  • 디지털 영상의 배포에서, 위 변조자에 의해 영상이 변조되는 심각한 문제가 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 영상의 픽셀값 경사도에 따른 특징벡터를 이용한 미디언 필터링 영상 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 계수를 1~6차까지의 6 Dim.을 계산한다. 그리고 경사도를 Poisson 방정식의 해에 의한 재구성 영상과 원영상과의 차영상으로 부터, 4 Dim. (평균값, 최대값 그리고 최대값의 좌표 i,j)의 특징벡터를 추출한다. 2 종류의 특징벡터는 10 Dim.으로 조합되어 변조된 영상의 미디언 필터링 (Median Filtering: MF) 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 미디언 필터링 검출 알고리즘은 동일 10 Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 비교하여 원영상, 평균필터링 ($3{\times}3$) 영상 그리고 JPEG (QF=90) 영상에서는 성능이 우수하며, Gaussian 필터링 ($3{\times}3$) 영상에서는 성능이 다소 낮지만, 성능평가 전체항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.

Fourier 변환 변이계수를 이용한 미디언 필터링 영상의 포렌식 판정 (Forensic Decision of Median Filtering Image Using a Coefficient of Variation of Fourier Transform)

  • 이강현
    • 전자공학회논문지
    • /
    • 제52권8호
    • /
    • pp.67-73
    • /
    • 2015
  • 디지털 영상의 배포에서, 위 변조자에 의해 영상이 변조되는 심각한 문제가 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 영상의 Fourier 변환 변이계수를 이용한 미디언 필터링 (Median Filtering: MF) 영상의 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘에서, 영상의 각 수평, 수직라인의 Fourier 변환 (Fourier Transform: FT)을 하고, 이웃 라인과의 변이계수를 기반으로 하여 MF 검출 (Median Filtering Detection: MFD)을 위한 10 Dim. 특징벡터를 정의한다. 이는 MF 검출기의 SVM (Support Vector Machine) 학습에 사용된다. 제안된 미디언 필터링 검출 스킴은 동일 10 Dim. 특징벡터의 MFR (Median Filter Residual)과 Rhee의 MF 검출 스킴과 비교하여 원영상, JPEG (QF=90), Down 스케일링 (0.9) 그리고 Up 스케일링 (1.1) 영상에서는 성능이 우수하며, Gaussian 필터링($3{\times}3$) 영상에서는 성능이 일부 높았다. 제안된 알고리즘은 성능평가 전체항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)에 의한 AUC (Area Under ROC (Receiver Operating Characteristic) Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.

디지털 영상 픽셀값의 경사도를 이용한 Downscaling Forgery 검출 (Downscaling Forgery Detection using Pixel Value's Gradients of Digital Image)

  • 이강현
    • 전자공학회논문지
    • /
    • 제53권2호
    • /
    • pp.47-52
    • /
    • 2016
  • 스마트 기기와 소형 디스플레이에 사용되는 디지털 영상은 다운스케일링 (Downscaling)된 영상이 사용된다. 본 논문에서는 영상 픽셀값의 경사도에 따른 특징벡터를 이용한 다운스케일링 포저리 (Forgery) 영상 검출 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 (AR: Autoregressive) 계수를 계산한다. 이는 다운스케일링 포저리 영상 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 다운스케일링 검출 알고리즘은 동일 10-Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 686-Dim.의 SPAM (Subtractive Pixel Adjacency Matrix) 스킴과 비교하여 다운스케일링 90% 영상 포저리에서 성능이 우수하며, 평균필터링 ($3{\times}3$) 영상과 미디언필터링 ($3{\times}3$) 영상에서 높은 검출율을 보여 주었다. 특히, 평균필터링과 미디언필터링 영상에서는 성능평가 전체 항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.