• Title/Summary/Keyword: Medial amygdala

Search Result 17, Processing Time 0.02 seconds

Voxel-based Morphometry (VBM) Based Assessment of Gray Matter Loss in Medial Temporal Lobe Epilepsy: Comparison with FDG PET (화소기반 형태분석 방법을 이용한 내측측두엽 간질환자의 회백질 부피/농도 감소평가; FDG PET과의 비교)

  • Kang, Hye-Jin;Lee, Ho-Young;Lee, Jae-Sung;Kang, Eun-Joo;Lee, Sang-Gun;Chang, Kee-Hyun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2004
  • Purpose: The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron omission tomography (FDG PET). Materials and Methods: MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was peformed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Results: Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Conclusions: Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.

Neural Correlates of Faux Pas Detection: An fMRI Study (헛디딤 탐지의 신경 상관: 기능적 자기공명 영상 연구)

  • Park, Min;Lee, Seung-Bok;Yoon, Hyo-Woon;Ghim, Hei-Rhee
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.77-93
    • /
    • 2010
  • The aim of this study was to identify neural correlates underlying the detection of faux pas, a test of theory of mind (ToM), in Korean healthy adults. Using functional magnetic resonance imaging, we compared the brain activities associated with faux pas stories and the activities associated with control stories. Faux pas stories compared with the control stories produced activations bilaterally in the superior frontal gyrus (BA 9) and in the precuneus (BA 7). The left medial frontal gyrus (BA 9), the left superior temporal gyrus (BA 38), the left inferior temporal gyrus (BA 20) and the right inferior parietal lobule (BA 40), the right postcentral gyrus (BA 1), the right lingual gyrus (BA 18), the right transverse temporal gyrus (BA 41) were also activated. The orbitofrontal cortex and the amygdala were not found to be involved in the detection of faux pas. This result suggests that brain activations associated with ToM are dependent on the type of mental state drawn by the task.

  • PDF

Compensatory change of opposite hippocampus after temporal lobe surgery in patients with temporal lobe epilepsy Evidence from single-voxel proton MR spectroscopy

  • Lee, Sang-Hyun;Chang, Kee-Hyun;Chung, Chun-Kee;Song, In-Chan;Han, Moon-Hee
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.172-172
    • /
    • 2001
  • Purpose: To evaluate compensatory change of opposite hippocampus after temporal lobe surgery in th patient with temporal lobe epilepsy by using single-voxel proton MR spectroscopy. Method: Eighteen patients with intractable temporal lobe epilepsy (TLE) whose MR diagnos was unilateral hippocampal sclerosis (n=11) or localized unilateral anterior temporal lobe lesio (n=7) and who underwent anterior temporal lobectomy were included in the study. Singl proton MRS of opposite hippocampus was carried out on the same day or within 1 week af MR imaging before temporal lobe surgery and after over 1-year post-surgical follow-u Single voxel proton MRS were acquired using GE signa 1.5T scanner and spectrosco system (TR, 1500-2, 000: TE, 136-144). Region of interest (ROI) was placed in a simitar position for all examination to cover the medial temporal lobes including most of the head an body of hippocampus and a part of amygdala, the parahippocampal gyrus. The MR spectr were evaluated with a focus on the metabolite ratio of N-acetylaspartate (NAA choline-containing phospholipids (Cho), creatine (Cr). The metabolite ratios of NAA/ Cr were calculated from the relative peak height measurement. We evaluated change of th intensity ratio NAA/Cr between before and after surgery, to simplify quantification acro patients, because observed decreases in the ratio of NAA/Cr can be interpreted in terms o neuronal or axonal damage.

  • PDF

Aqueous Extracts of Walnut (Juglans regia L.) and Nelumbo nucifera Seeds Reduce Plasma Corticosterone Levels, Gastric Lesions, and c-fos Immunoreactivity in Chronic Restraint-stressed Mice

  • Kim, Dae-Won;Hwang, In-Koo;Yoo, Ki-Yeon;Li, Hua;Kang, Il-Jun;Moon, Won-Kuk;Won, Moo-Ho;Kim, Seok-Joong;Han, Dae-Seok;Kim, Dong-Woo
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.713-717
    • /
    • 2008
  • In the present study, chronic effects of the hot water extracts of walnut seed (Juglans regia L.) (WSE) and Nelumbo nucifera seed (NSE) were investigated in mice exposed to 2 hr of restraint stress each day for 4 weeks. Corticosterone levels in serum were significantly increased in the vehicle-treated stressed group ($25\;{\mu}g/dL$) compared to that in the control group ($13\;{\mu}g/dL$). This stress induced gastric redness and lesions. However, treatment with WSE and/or NSE significantly protected the stomach from this lesion by 50-60% compared to that in the vehicletreated group. In the amygdala, the administration of WSE and/or NSE also reduced the immediate early gene (c-fos) expression by 70-90% vs. the vehicle-treated group. These suggest that WSE and/or NSE may reduce the appearance of symptoms induced by stress and these materials are useful as anti-stress foods, as natural products tend to be relatively safe compared to chemical products.

Dysfunctional Social Reinforcement Processing in Disruptive Behavior Disorders: An Functional Magnetic Resonance Imaging Study

  • Hwang, Soonjo;Meffert, Harma;VanTieghem, Michelle R.;Sinclair, Stephen;Bookheimer, Susan Y.;Vaughan, Brigette;Blair, R.J.R.
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.449-460
    • /
    • 2018
  • Objective: Prior functional magnetic resonance imaging (fMRI) work has revealed that children/adolescents with disruptive behavior disorders (DBDs) show dysfunctional reward/non-reward processing of non-social reinforcements in the context of instrumental learning tasks. Neural responsiveness to social reinforcements during instrumental learning, despite the importance of this for socialization, has not yet been previously investigated. Methods: Twenty-nine healthy children/adolescents and 19 children/adolescents with DBDs performed the fMRI social/non-social reinforcement learning task. Participants responded to random fractal image stimuli and received social and non-social rewards/non-rewards according to their accuracy. Results: Children/adolescents with DBDs showed significantly reduced responses within the caudate and posterior cingulate cortex (PCC) to non-social (financial) rewards and social non-rewards (the distress of others). Connectivity analyses revealed that children/adolescents with DBDs have decreased positive functional connectivity between the ventral striatum (VST) and the ventromedial prefrontal cortex (vmPFC) seeds and the lateral frontal cortex in response to reward relative to non-reward, irrespective of its sociality. In addition, they showed decreased positive connectivity between the vmPFC seed and the amygdala in response to non-reward relative to reward. Conclusion: These data indicate compromised reinforcement processing of both non-social rewards and social non-rewards in children/adolescents with DBDs within core regions for instrumental learning and reinforcement-based decision-making (caudate and PCC). In addition, children/adolescents with DBDs show dysfunctional interactions between the VST, vmPFC, and lateral frontal cortex in response to rewarded instrumental actions potentially reflecting disruptions in attention to rewarded stimuli.

Voxel-wise Mapping of Functional Magnetic Resonance Imaging in Impression Formation

  • Jeesung Ahn;Yoonjin Nah;Inwhan Ko;Sanghoon Han
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.77-94
    • /
    • 2022
  • Social interactions often involve encountering inconsistent information about social others. We conducted a functional magnetic resonance imaging (fMRI) study to comprehensively investigate voxel-wise temporal dynamics showing how impressions are anchored and/or adjusted in response to inconsistent social information. The participants performed a social impression task inside an fMRI scanner in which they were shown a male face, together with a series of four adjectives that described the depicted person's personality traits, successively presented beneath the image of the face. Participants were asked to rate their impressions of the person at the end of each trial on a scale of 1 to 8 (where 1 is most negative and 8 is most positive). We established two hypothetical models that represented two temporal patterns of voxel activity: Model 1 featured decreasing patterns of activity towards the end of each trial, anchoring impressions to initially presented information, and Model 2 showed increasing patterns of activity toward the end of each trial, where impressions were being adjusted using new and inconsistent information. Our data-driven model fitting analyses showed that the temporal activity patterns of voxels within the ventral anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex, amygdala, and fusiform gyrus fit Model 1 (i.e., they were more involved in anchoring first impressions) better than they did Model 2 (i.e., showing impression adjustment). Conversely, voxel-wise neural activity within dorsal ACC and lateral OFC fit Model 2 better than it did Model 1, as it was more likely to be involved in processing new, inconsistent information and adjusting impressions in response. Our novel approach to model fitting analysis replicated previous impression-related neuroscientific findings, furthering the understanding of neural and temporal dynamics of impression processing, particularly with reference to functionally segmenting each region of interest based on relative involvement in impression anchoring as opposed to adjustment.

Metabolic impairment pattern analysis of the Alzheimer's disease (Alzheimer's Disease의 대사영상패턴 분석)

  • Juh, Ra-Hyeong;Lee, Chang-Uk;Chung, Yong-An;Choe, Bo-Young;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.91-95
    • /
    • 2004
  • Several MRI studies have reported reductions in temporal lobe volumes in Alzheimer's disease (AD). Measures have been usually obtained with regions-of-interest (ROI) drawn manually on selected medial and lateral portions of the temporal lobes, with variable choices of anatomical borders across different studies. We used the automated voxel-based morphometry (VBM) approach to investigate gray matter abnormalities over the entire extension of the temporal lobe in 10AD patients (MM5E 22)and 22 healthy controls. Foci of significantly reduced gray matter volume in AD patients were detected in both medial and lateral temporal regions, most significantly in the right and left posterior parahippocarmpal gyri. At a more flexible statistical threshold (P<0.01, uncorrected for multiple comparisons), circumscribed foci of significant gray matter reduction were also detected in the right amygdala/enthorinal cortex, the anterior and posterior borders of the superior temporal gyrus bilaterally, and the anterior portion of the left middle temporal gyrus. These VBM results confirm previous findings of temporal lobe atrophic changes in AD, and suggest that these abnormalities may be confined to specific sites within that lobe, rather than showing a widespread distribution.

  • PDF