• Title/Summary/Keyword: Mecoprop

Search Result 18, Processing Time 0.03 seconds

Genetic and Phenotypic Diversity of Dichlorprop-Degrading Bacteria Isolated from Soils

  • Park, Hae-Dong;Ka, Jong-Ok
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.7-15
    • /
    • 2003
  • Nine dichlorprop-degrading bacteria and three pairs of bacteria showing syntrophic metabolism of the herbicide were isolated from soils, and their genetic and phenotypic characteristics were investigated. Analysis of 16S rDNA sequences indicated that the isolates were related to members of the genera, Sphingomonas, Herbaspirillum, and Bradyrhizobium. Twelve different chromosomal DNA patterns were obtained by polymerase-chain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences from the 15 isolates. The isolates were able to utilize the herbicide dichlorprop as a sole source of carbon and energy and their dichlorprop derogative pathways were induced by the presence of dichlorprop. Most of the isolates and syntrophic pairs were able to degrade both (R)- and (S)-dichlorprop, but strain DP522 exhibited enantioselective degradation of (S)-dichlorprop. The isolates degraded 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid , and mecoprop, in addition to dichlorprop. Oxygen uptake experiments indicated that most of the isolates degraded dichlorprop through 2,4-dichlorophenol.

Response of Liquorice (Glycyrrhiza uralensis) to Several Soil- and Foliar-Applied Herbicides (감초경작지의 잡초방제를 위한 제초제 선발)

  • Kim, Song-Mun;Oh, Hae-Young;Kim, Yong-Ho;Cho, Jun-Mo;Hur, Jang-Hyun;Han, Dae-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.81-86
    • /
    • 2000
  • The objective was to develop herbicides for liquorice (Glycyrrhiza uralensis), one of most important ingredients of herbal medicine in Korea. Soil-applied herbicides, pendimethalin at 1,585 g a.i. $ha^{-1}$, simazine at 1,000 g a.i. $ha^{-1}$, alachlor at 5 g a.i. $ha^{-1}$, metolachlor at 1,600 g a.i. $ha^{-1}$, and ethalfluralin at 1,050 g a.i. $ha^{-1}$ provided greater control of hairy crabgrass and barnyardgrass (> 60%) but less control of Abutilon avicennae and Fagopyrum esculentum under growth chamber conditions. Of tested soil-applied herbicides, pendimethalin and simazine showed slight injury to liquorice (<17%). In the field experiment conducted in Chunchon, pendimethalin and simazine provided greater control of weeds: total fresh weight of weeds in control plots was 187 g $m^{-2}$, while those in both herbicides-treated plots were nil. Fresh weights of liquorice seedlings in pendimethalin- and simazine-applied plots, however, were not different from those in control plots. Foliar-applied herbicides, such as dicamba at 964 g a.i. $ha^{-1}$, 2,4-D at 280 g a.i. $ha^{-1}$, mecoprop at 2,500 g a.i. $ha^{-1}$, flazasulfuron at 75 g a.i. $ha^{-1}$, imazaquin at 800 g a.i. $ha^{-1}$, bentazon at 1,600 g a.i. $ha^{-1}$, and pyribenzoxim at 30 g a.i. $ha^{-1}$ reduced the growth of liquorice seedlings and provided moderate to total damage. Overall results show that pendimethalin and simazine appears to be effective herbicide candidates for liquorice.

  • PDF

Herbicidal Efficacy of Bispyribac-sodium Combined with Other Herbicides for Annual Bluegrass(Poa annua L.) Suppression (새포아풀(Poa annua L.) 방제를 위한 Bispyribac-sodium과 타약제와의 혼합 상호작용)

  • Park, Nam-Il;Lee, In-Yong;Park, Jae-Eup;Kim, Ho-Jun;Chun, Jae-Chul;Ogasawara, Masaru
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • Bispyribac-sodium is a new-type herbicide that prevents the occurrence of annual bluegrass by the suppression of anthesis and inflorescence emergence on the bent green. The greenhouse experiment was conducted to investigate interaction effect of the bispyribac-sodium with 21 soil- and foliar-applied herbicides in regards of herbicidal activity of annual bluegrass. The remarkable synergism was not found on the combination of bispyribac-sodium with benfluralin, pendimethalin, oryzalin, siduron, chlorphtalim, isoxaben, bifenox, tenylchlor, indanofan, bentazone, imazosulfuron, imazaquin, halosulfuron-methyl and limsulfuron. However, mixture of bispyribac-sodium with mecoprop, triclopyr, metsulfuron-methyl, cyclosulfamuron, pyrazosulfuron-ethyl and pyributicarb produced greater synergism of herbicidal activity when compared with unmixed, single application. Phytotoxicity was low on bentgrass green and fast recovery was observed. In future, it would be strongly necessary to do research to Investigate the effect of bispyribac-sodium combination with other herbicides under various environment and management practices on-site bentgrass green.

Effects of Several Herbicides on Control of Creeping Bentgrass in the Kentucky Bluegrass and Its Recovery (켄터키블루그래스 포장에 침입한 크리핑벤트그래스의 제초제를 이용한 방제와 회복)

  • Kim, Young-Sun;Jo, Kap-Jun;Lee, Hyo-Sun;Kang, Young-Nam;Lim, Hye-Jung;Lee, Kyu-Seong
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.395-401
    • /
    • 2013
  • This study was conducted to evaluate the selective control of creeping bentgrass invaded in Kentucky bluegrass by applying several herbicides and recovery of Kentucky bluegrass by sand injection seeding method. Selective herbicides such as mecoprop, triclopyr-TEA, imazaquin, bentazone and penosulam pyrazosulfuro-ethyl and non-selective herbicides such as glyphosate, paraquat dichloride and glyphsate ammonium oxyflorfen were used. Selective suppression of creeping bentgrass in Kentucky bluegrass was evaluated by turf color, chlorophyll and visual control indexes. Control of creeping bentgrass was most effective with the double dose application of triclopyr-TEA (2 Tri-T) in the selective herbicides and the 1 / 5 dose application of glyphosate ammonium oxyflorfen (1 / 5 GAO) in the non-selective herbicides. Visual control indexes by 2 Tri-T in selective herbicides and 1 / 5 GAOin non-selective herbicides were investigated 6.0 and 7.4, respectively. Treated sites were covered completely in 50 days after seeding Kentucky bluegrass by sand injection method.

Studies on Ecological Characteristics and Control of Exotic Weeds 2. Introduction route and control of exotic weeds in forage crop field (주요 외래잡초의 생태적 특성 및 방제에 관한 연구 2. 조사료 포장에 발생하는 주요 외래잡초의 유입경로 및 방제)

  • 박근제;윤세형;이종경;김영진
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.2
    • /
    • pp.103-108
    • /
    • 2001
  • This study was carried out to investigate the introduced route of exotic weeds and the effects of herbicide treatment. Herbicide trial was arranged as a completely randomized block design with treatment 1(\circled1 Dicamba $1\ell$/ha, \circled2 Mecoprop $5\ell$/ha, \circled3 Bentazone $3\ell$.ha, \circled4 Glyphosate $4\ell$/ha and \circled5 Pyrazosulfuron-ethyl 2kg/ha), and treatment 2(\circled1 Dicamba $2\ell$/ha, \circled2 Dicamba $4\ell$/ha, \circled3 Glyphosate $6\ell$/ha, \circled4 Glyphosate 4+Dicamba $1\ell$/ha and \circled5 Glyphosate 4+dicamba $2\ell$/ha) against 10 exotic weed species, and conducted in Suwon, Seosan and Yeongam from 1997 to 1999. Exotic weeds have been mostly introduced within imported cereals for concentrate feed or within seeds for forage production. Most of exotic weeds in forage crop field were controlled more than 95% by herbicide, but it was desirable that the control of exotic weeds was abreast of chemical and ecological method.

  • PDF

Effect of Herbicide Application on Weed Control and Forage Production in Alpine Grassland Predominated with Red Sorrel(Rumex acetosella L.) (애기수영이 우점한 고랭지 목초지에 제초제의 처리가 잡초방제 및 목초생육에 미치는 영향)

  • Kim, Y.K.;Chung, C.W.;Choi, Y.S.;Lim, Y.C.;Han , S.Y.;Na, K.J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.865-874
    • /
    • 2003
  • Red sorrel, as one of exotic weeds in Korea, was introduced along with imported cereals for concentrate feed or within the seed for forage production. The plant was dominated in grassland and reduced the quality of forage. In particular, this weed cause severe problem in alpine grassland. This study was carried out to investigate the effect and response of red sorrel and forage crops by foliar and soil applied herbicide application. Mecoprop(MCPP) and pendimethaline were selected by pre-field experiment trials and applied to control the red sorrel in grassland. Herbicidal activity of MCPP was 77.2% at 500$m\ell$/10a level and 82.8% at 750$m\ell$/10a level. However, seeds of red sorrel from bare land formed after foliar applied herbicide treatment were germinated and covered bare land. Pendimethalin was not reduced the rhizome growth grown from red sorrel root but retarded seedling growth of germinated red sorrel. The herbicidal activity of pendimethalin to the red sorrel seedling was 83.0%. 2 times application of MCPP at the rate of 750$m\ell$/10a was effective to control of red sorrel regrown from root and herbicidal activity was 93.2%. MCPP and pendimethaline treatment was not reduced growth of grass and have no herbicidal injury to forage crop seedling. Amount of MCPP and pendimethalin remained in grass plant was decreased from 20 days after herbicide treatment and could not be problem in livestock feeding.

Effects of Increasing Air Temperatures and CO2 Concentrations on Herbicide Efficacy of Acalypha australis and Phytotoxicity of Soybean Crops (대기온도와 CO2 농도 증가에 따른 우점잡초 깨풀의 제초제 약효 및 콩 약해 변화)

  • Hyo-Jin Lee;Hyun-Hwa Park;Ye-Geon Kim;Do-Jin Lee;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.121-133
    • /
    • 2023
  • The purpose of this study was to improve weed management systems under varying carbon dioxide concentrations and temperatures by evaluating the growth of Acalypha australis and observing the efficacy of four foliar and four soil herbicides, as well as measuring phytotoxicity in soybean crops treated with these herbicides. In both growth chamber and greenhouse conditions, plant height and shoot fresh weight of Acalypha australis increased as temperature increased. The variable to maximum fluorescence ratio (Fv/Fm), relative electron transport rate (ETR), plant height, leaf area, and shoot fresh weight of Acalypha australis were higher at carbon dioxide concentrations of 800 ppm than at 400 ppm. The efficacy of a foliar herbicide, glufosinate, on Acalypha australis was lower at 30℃ than at 20℃ and 25℃ in the growth chamber condition and was also lower at 29℃ than at 21℃ and 25℃ in greenhouse conditions. In contrast, mecoprop efficacy on Acalypha australis was lower at 20℃ and 25℃ than at 30℃ in growth chamber conditions and lower at 21℃ and 25℃ than at 29℃ in greenhouse conditions. Glyphosate efficacy was lower at 21℃ than at 25℃ and 29℃ under greenhouse conditions. With soil herbicides, metolachlor and ethalfluraline, efficacies were higher at relatively high temperatures under both growth chamber and greenhouse conditions. However, in the case of linuron, the difference in efficacy was not observed under varying temperatures in both growth chamber and greenhouse conditions. When ¼ of the recommended glyphosate rates were applied to Acalypha australis, efficacy was lower under 800 ppm carbon dioxide concentrations than under 400 ppm. In contrast, when ¼ of the recommended rate of bentazone was applied to Acalypha australis, efficacy was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. Despite application rates, glufosinate efficacy differed insignificantly under different carbon dioxide concentrations. When applied at ¼ of the recommended rate, the efficacy of ethalfuralin was higher under 800 ppm carbon dioxide concentrations than under 400 ppm. However, efficacies of other herbicides were not different despite varying carbon dioxide concentrations. Soybean phytotoxicity in crops treated with the recommended rate and twice the recommended rate of soil herbicides was not significantly different regardless of temperature and carbon dioxide concentrations. Overall, weed efficacy of some herbicides decreased in response to different temperatures and carbon dioxide concentrations. Therefore, new weed management methods are required to ensure high rates of weed control in conditions affected by climate change.

Creeping Bentgrass(Agrostis palustris Huds.) Control in Kentucky Bluegrass(Poa pratensis L.) Fairways (켄터키 블루그래스 페어웨이에서 문제가 되는 크리핑 벤트그래스 방제)

  • Tae Hyun-Sook
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.65-72
    • /
    • 2005
  • Creeping bentgrass (Agrostis palustris Huds.) had been the problematic weed for Kentucky bluegrass (Poa pratensis L.) fairway since it shows light green color all year. Experiment was carried out to determine the best herbicides combination to control creeping bentgrass in Kentucky bluegrass. fairway without injury. To investigate the efficacy of herbicides, five post-emergence herbicides of asulam WG ($87.6\%$), imazaquin SL ($20\%$), fenoxaprop-P-ethyl EC ($7\%$), mecoprop SL ($50\%$), triclopyr-TEA SL ($30\%$) and one pre-emergence herbicide pendimethalin EC ($31.7\%$) treated on 21 Sept. and 10 Nov. 2003. Kentucky bluegrass visual quality evaluated 30 and 50 days after application for phytotoxic effects of the herbicides. As a result, asulam WG (0.2g/$m^{2}$) and imazaquin SL (0.3ml/$m^{2}$) showed approximately $90\%$ of control in creeping bentgrass, but visual quality of Kentucky bluegrass significantly decreased from 20 to 50DAT (day after treatment). However, creeping bentgrass was acceptably controlled(over $80\%$) by fenoxaprop-P-ethyl EC (0.4ml/$m^{2}$)+triclopyr-TEA SL(0.3 ml/$m^{2}$) applied twice on 21 Sept. and 1 Oct. 2003 without serious injury on Kentucky bluegrass. Therefore, it is suggested that an application of fenoxaprop-P-ethyl EC (0.4ml/ $m^{2}$)+triclopyr-TEA SL (0.3 ml/$m^{2}$) may be more effective to control creeping bentgrass in Kentucky bluegrass with the least phytotoxicity by herbicides.