• Title/Summary/Keyword: Mechatronics Education

Search Result 279, Processing Time 0.029 seconds

Using genetic algorithms to optimize The Bungee Jump rope (번지점프 로프의 최적화를 통한 유전 알고리즘 사용)

  • Woo, Dong Hyeon;Han, Sang Yong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.532-534
    • /
    • 2015
  • This is a dissertation is in urgent announce of the domestic legislation about bungee jumping. A bungee jumping operator puts the blame on us for causing the bungee jumping accident but before calling it, equipment of bungee jumping was old and deficient. Fee of bungee jumping is fifty thousand won. A rope seller has raised the price, as operator break the rope used limit. So that is reasonable price. Even now, operator break the rope used limit and legislation about bungee jumping is nonexistent so bungee jumping accidents occur with frequency in domestic.

  • PDF

An Analysis of a Thermo-plastic Melt Flow in the Metering Zone of a Polymer Extruder (고분자 압출기에 있어서 계량부 용융수지의 유동해석)

  • Choi, Man Sung;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.7-12
    • /
    • 2012
  • Extrusion is one of the most important operations in the polymer-processing industry. Development of models for extrusion and computer tools offer a route to developing reliable and optimized process designs. The models are based on the analysis of physical phenomena encountered during the process. Balance equations for mass, momentum and energy are fundamental to the problem. A predictive computer model has been developed for the single screw extruders with conventional screws of different geometry. The model takes into account melting zones of the extruder and describes an operation of the extruder system, making it possible to predict mass flow rate of the polymer, pressure and velocity profiles along the extruder screw channel. The simulation parameters are the material and rheological properties of the polymer; the screw pitch, and screw speed.

A Study on Performance Comparison of Machine Learning Algorithm for Scaffold Defect Classification (인공지지체 불량 분류를 위한 기계 학습 알고리즘 성능 비교에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.77-81
    • /
    • 2020
  • In this paper, we create scaffold defect classification models using machine learning based data. We extract the characteristic from collected scaffold external images using USB camera. SVM, KNN, MLP algorithm of machine learning was using extracted features. Classification models of three type learned using train dataset. We created scaffold defect classification models using test dataset. We quantified the performance of defect classification models. We have confirmed that the SVM accuracy is 95%. So the best performance model is using SVM.

Characteristics of Salt Concentration in Electrolyte of Lithium Ion Battery According to Sudden Temperature Change (급격한 온도 변화에 따른 리튬 이온 배터리의 전해질 내 염 농도 분포 특성)

  • Jang, Kyung Min;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • Lithium-ion batteries are widely used, from lightweight to energy-intensive, from small devices to large ESSs. However, it is sensitive to the surrounding environment and there is a change in performance depending on the temperature change. In this study, the temperature dependence of the charge / discharge characteristics of the battery is shown through simulation and the distribution of the salt concentration in the electrolyte is observed when the sudden temperature change is applied.

  • PDF

A Study on Warpage Reduction of FDM 3D Printer Output Using TRIZ Method (TRIZ 기법을 이용한 FDM방식 3D프린터 출력물의 휨 현상 개선에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong;Park, Jong Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.1-5
    • /
    • 2016
  • 3D printer is the equipment of the system for sequentially layer laminated in the materials. Now 3D printer used in various fields such as, semiconductor, electricity automobile, medical and various types of output method and material. In this paper, we studied about the improvement on warpage due to shrinkage of product from 3D printer of FDM(Fused Deposition Modeling) type, we proposed measures systematically to solve warpage problem using of 6SC(6 Step Creativity) method of practical TRIZ. After experimented with product prototypes experiment, we verified effect about solution.

Study on Design of high Efficient Cooling System for Low Temperature Furnace in Semiconductor Processing (반도체 공정용 저온 열처리로의 고효율 냉각시스템 설계에 관한 연구)

  • Jeoung, Du-Won;Suh, Ma-Son;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.71-76
    • /
    • 2010
  • According to recent changes in industry for semiconductor devices, a low-temperature treatment has become a necessity. These changes relate to size refinement and the development of new materials. While variation in cooling efficiency does not affect the yield when using a high-temperature treatment, uniform cooling efficiency is necessary avoid "inconsistencies/bends" in low temperature treatments. However it is difficult to increase temperature stabilization in low temperature treatments. In this paper, using CFD (Computer Fluid Dynamics), we analyze and manipulate the design and input of the low-temperature system to attempt to control for temperature variations within the quartz tube, of which airflow appears to be a predominant factor. This simulation includes variable inputs such as airflow rate, head pressure, and design manipulations in the S.C.U. (Super Cooling Unit).

Development of Unmanned Cleaning Robot for Photovoltaic Panels (태양광발전시설 무인 유지보수 로봇 개발)

  • Lee, Hyungyu;Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.144-149
    • /
    • 2019
  • This paper describes the results of a study on the unmanned maintenance robot that simultaneously performs the cleaning and inspection of the photovoltaic panels. The robot has a special adsorptive device, an infrared sensor, a vacuum level sensor and a camera. The robot uses two SSC (Sliding Suction Cup) adsorptive devices to move up and down the slope. First, the forces generated when the robot moves up the slope are mechanically analyzed, and the required design and control of the adsorption system are suggested. The robot was designed and manufactured to operate stably by using the presented results. Next, the normal force between the panel and the wheel was measured to confirm that the robot was manufactured and operated as intended, and the robot motion was tested on the inclined panel. It has been proven that robots are well designed and built to clean and inspect sloped panels.

A Study on Manufacturing Problem Solving of Scaffold with Pore Using 3SC Practical TRIZ and Machine Learning (3SC 실용트리즈와 머신러닝을 이용한 기공을 가진 인공지지체 제조문제 해결에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.25-30
    • /
    • 2019
  • In this paper, we have analyzed manufacturing problems of the scaffold with pores using FDM 3D printer and PLGA. We suggested the solutions using 3SC practical TRIZ. We selected the final solution used machine learning. We reduced number of experiments using most influential factor after analysis print factors. We printed the scaffold and measured pore size. We created the regression model using python tensorflow. The print condition data of measured pore size was used as training data. We predicted the pore size of printed condition using regression model. We printed the scaffold using the predicted the print condition data. We quantitatively compare the predicted scaffold pore size data and the measured scaffold pore size data. We got satisfactory result.

A Research on the Assessment of Thermal Performance of Energy Storage Li-Ion Battery Pack (에너지 저장용 Li-Ion 배터리 팩의 열적 성능 평가에 관한 연구)

  • Jang, Hyuk;Jang, KyungMin;Kim, KwangSun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • The battery pack in this research consists of dozens of a small battery for energy storage. And this battery pack charges and discharges repeatedly at high capacity (25 ~ 50 V, 25 ~ 100 A). The high temperature which can be generated in this process has a bad effect to the lifetime and efficiency of batteries. Moreover these factors are related with maintenance cost. Therefore, we need to assess the thermal performance of the battery pack in advance using the experimental or numerical analysis. In this research, we analyzed voltage and surface temperature of one cell battery to calculate heat transfer using the numerical analysis. And the temperature of the battery surfaces and inside of the pack was also analyzed. As a result, we found out the appropriate pack structure which stacked five modules.

Study on Coolant Passage for Improving Temperature Uniformity of the Electrostatic Chuck Surface (정전척 표면의 온도 균일도 향상을 위한 냉매 유로 형상에 관한 연구)

  • Kim, Dae-Hyeon;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.72-77
    • /
    • 2016
  • As the semiconductor production technology has gradually developed and intra-market competition has grown fiercer, the caliber of Si Wafer for semiconductor production has increased as well. And semiconductors have become integrated with higher density. Presently the Si Wafer caliber has reached up to 450 mm and relevant production technology has been advanced together. Electrostatic chuck is an important device utilized not only for the Wafer transport and fixation but also for the heat treatment process based on plasma. To effectively control the high calories generated by plasma, it employs a refrigerant-based cooling method. Amid the enlarging Si Wafers and semiconductor device integration, effective temperature control is essential. Therefore, uniformed temperature distribution in the electrostatic chuck is a key factor determining its performance. In this study, the form of refrigerant flow channel will be investigated for uniformed temperature distribution in electrostatic chuck.