• Title/Summary/Keyword: Mechanisms

Search Result 13,110, Processing Time 0.036 seconds

Using System Dynamics to study systemic corruption (시스템다이내믹스를 활용한 체제적 부패 연구)

  • Lim, Seong Bum
    • Korean System Dynamics Review
    • /
    • v.15 no.4
    • /
    • pp.29-60
    • /
    • 2014
  • As every commentators has noted, bureaucratic corruption, which has complicated causes, is prevalent phenomenon in Korean society. Especially, most people realize that systemic corruption has a strong negative effect on society; however, only few studies reflect on the nature of 'systemic corruption' and it seems that no established theory explains the phenomenon. Thus, this study suggest that we look more carefully into the nature and mechanisms of 'systemic corruption'. Interdisciplinary approach based on the integrated model of structure-behavior to analyse the nature of bureaucratic corruption. The system dynamics method can test the mechanisms of 'systemic corruption'. With this way, the factors generating systemic corruption represent the relationships reinforcing and balancing within system dynamics model. This paper also consider 'isomorphism' and 'dominance' as control mechanisms to systemic corruption. From the CLD(Causal Loop Diagram), three main areas(rent in organization, networking, control mechanisms) are overlapped and it indicates dynamic relationships of systemic corruption in organizations.

  • PDF

Molecular Mechanisms of Succinate Dehydrogenase Inhibitor Resistance in Phytopathogenic Fungi

  • Sang, Hyunkyu;Lee, Hyang Burm
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The succinate dehydrogenase inhibitor (SDHI) is a class of fungicides, which is widely and rapidly used to manage fungal pathogens in the agriculture field. Currently, fungicide resistance to SDHIs has been developed in many different plant pathogenic fungi, causing diseases on crops, fruits, vegetables, and turf. Understanding the molecular mechanisms of fungicide resistance is important for effective prevention and resistance management strategies. Two different mechanisms have currently been known in SDHI resistance. The SDHI target genes, SdhB, SdhC, and SdhD, mutation(s) confer resistance to SDHIs. In addition, overexpression of ABC transporters is involved in reduced sensitivity to SDHI fungicides. In this review, the current status of SDHI resistance mechanisms in phytopathogenic fungi is discussed.

Strength Evaluation of Inverted T-shaped Composite Basement Wall Based on Failure Mechanisms (파괴기구에 근거한 역 T형 합성지하벽의 강도평가)

  • 박지환;서수연;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.415-420
    • /
    • 2003
  • This Study is performed to analyze the behavior of inverted T-shaped Composite Basement Wall(CBW). For this, it is purposed to analyze the failure mechanisms of inverted T-shaped composite basement wall and propose the method of evaluating strength for design. The failure mechanisms would be devided into 4 type mechanisms from previous experimental results, that is hanger failure, punching shear failure, flexural failure and the buckling of H-pile. A strength evaluation procedure for CBW is induced by analyzing respective failure mechanism. Then, the strength for actual structure consisted of inverted T-shaped composite basement wall was evaluated and the expected failure mechanism was determined.

  • PDF

Mobility Analysis of Planar Mobile Robots and The Rough-Terrain Mobile Robot via The Representative Screw (대표 스크류를 이용한 평면형 및 험로 주행 로봇의 모빌리티 분석)

  • 김희국;이승은;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.881-889
    • /
    • 2002
  • Mobility analysis for various mobile mechanisms including mechanisms with lack of geometric generality is performed. Joint screws are employed to find the sire of feasible joint motion space or each of independent loops of mobile mechanisms. Particularly, the concept of "representative screws" is introduced to represent the feasible motion spaces for subsets of joints belonging to either a loop or a sub-system consisting of several closed loops. Firstly. simplified joint model for each of low different typical wheels popularly employed in mobile robots is described. Then. mobility analysis fir various types of planar mobile robots and the Mars Rover mobile robot for navigation on the rocky road on Mars arc performed. It is confirmed that the obtained results in this study coincide with the previous ones which were obtained by suing imaginary Joints approach(1)pproach(1)

Optimum Design of Wiper Mechanisms Consisting of Two RSSR Mechanisms (두개의 RSSR 기구로 이루어진 와이퍼기구의 최적설계)

  • 최진호;최동훈;서진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1573-1580
    • /
    • 1995
  • In this paper, an optimization program for the design of wiper mechanisms is developed to minimize jerky motion while satisfying design constraints on kinematic and torque performances, mobility condition, and packaging. The lengths/orientations of the links and the position of a driving motor are selected as the design variables. In our optimum design program for wiper mechanisms, an optimization module interacts with an analysis module which calculates kinematic and force/torque properties, until convergence. The optimization results of a particular wiper mechanism are presented to illustrate the effectiveness of the program developed.

Derivation of Real Values from Imaginary Roots by Altering Prescribed Positions in the Precision Point Synthesis of Mechanisms (정밀점 기구합성시 지정위치의 변경을 이용한 허근의 실수화 방법)

  • 이태영;심재경;이재길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.196-202
    • /
    • 2000
  • In the precision point synthesis of mechanisms, it is usually required to solve a system of polynomial equations. With the aid of efficient algorithms such as elimination, it is possible to obtain all the solutions of the equations in the complex domain. But among these solutions only real values can be used fur real mechanisms, while imaginary ones are liable to be discarded. In this article, a method is presented, which leads the imaginary solutions to real domain permitting slight alteration of prescribed positions and eventually increases the number of feasible mechanisms satisfying the desired motion approximately. Two synthesis problems of planar 4-bar path generation and spatial 7-bar motion generation are given to verify the proposed method.

  • PDF

Mobility in the Contact Joint of a Mechanism (접촉 조인트에서의 운동자유도)

  • Lee, Jang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.109-114
    • /
    • 2007
  • The mobility (degree of freedom) of mechanisms can be regarded as independent coordinate to define its position. This concept is essential for kinematics, and for designing mechanisms in the practical point of view. Gruebler's equation has been applied to estimate the mobility using number of links and joints of a mechanism. In practical case, there are many types of mechanisms, which transfer motion by direct contact between two links. However, no exact kinematic definition has existed for the joint that the contact takes place in a mechanism. In this paper, a new concept of contact joint is defined and modified Gruebler's equation is suggested to calculate mobility of a mechanism with the joint. This concept would be useful in mechanism design because it will be possible to manage many contact mechanisms with kinematic exactness.

Oxidative Stress Resulting from Environmental Pollutions and Defence Mechanisms in Plants (환경오염(環境汚染)에 의한 산화(酸化)스트레스와 식물체(植物體)의 방어기작(防禦機作))

  • Shim, Sang-In;Kang, Byeung-Hoa
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.264-280
    • /
    • 1993
  • The environmental pollutions were a serious problem in Korea recently. So many researcher have studied the effect of environmental pollution on plants and agro-ecosystem, but the basic mechanisms of environmental stresses were various. One of the important mechanisms was oxidative stress caused by active toxic oxygen. The toxic oxygen was generated by several stresses, abnormal temperature, many xenobiotics, air pollutants, water stress, fugal toxin, etc. In the species of toxic oxygen which is primary inducer of oxidative stresses, superoxide, hydrogen peroxide, hydroxyl radical and singlet oxygen were representative species. The scavenging systems were divided into two groups. One was nonenzymatic system and the other enzymatic system. Antioxidants such as glutathione, ascorbic acid, and carotenoid, have the primary function in defense mechanisms. Enzymatic system divided into two groups; First, direct interaction with toxic oxygen(eg. superoxide dismutase). Second, participation in redox reaction to maintain the active antioxidant levels(eg. glutathione reductase, ascorbate peroxidase, etc.).

  • PDF

The Molecular Basis of Adenomyosis Development

  • Yang, Woo Sub;Lim, Jeong Mook;Ahn, Ji Yeon
    • Journal of Embryo Transfer
    • /
    • v.33 no.1
    • /
    • pp.49-54
    • /
    • 2018
  • Adenomyosis is a benign gynecological disease frequently affecting women of reproductive age. It has a negative impact on the quality of life, causing bleeding disorders, dysmenorrhea, chronic pelvic pain, and infertility. However, the molecular mechanisms involved in adenomyosis development remain unclear. This paper summarizes the reports found in the MEDLINE database on the molecular mechanisms involved in the development and progression of uterine adenomyosis. The literature search included the following terms: "adenomyosis," "adenomyoma," "pathogenesis," "molecular mechanisms," and "gynecological disorders." Only peer-reviewed, English-language journal articles were included. This review focuses on the molecular genetics, epigenetic modifications, and pivotal signaling pathways associated with adenomyosis development and progression, which will provide insights into and a better understanding of its underlying pathophysiology.

Immunity and asthma: friend or foe?

  • Mehta, Anita;Gohil, Priyanshee
    • Advances in Traditional Medicine
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Immunity is responsible for the defense mechanism of the body but in case of autoimmune diseases, its role gets diverted. Like so many other diseases, asthma is also considered as one of the most common autoimmune diseases to be occurring in community. Asthma is defined as a chronic inflammatory airway disease that is characterized by airway hyper reactivity and mucus hypersecretion that result in intermittent airway obstruction. The incidence of allergic asthma has almost doubled in the past two decades. Although, precise causative mechanism of asthma is unknown, but several mechanisms have been proposed that is immunological, pharmacological and genetic mechanisms, and airway and neurogenic inflammation. The inflammatory process observed in the asthmatic patients is the final result of a complex network of interactions between various immunological cell lineages, its mediators and secreted substances. Thus, among the mechanisms proposed, the immunological one plays a key role. Through this article, we have tried to provide some insight into immunological mechanisms in pathogenesis of asthma.