• Title/Summary/Keyword: Mechanism of adsorption

Search Result 450, Processing Time 0.026 seconds

The Investigation of Electro-Oxidation of Methanol on Pt-Ru Electrode Surfaces by in-situ Raman Spectroscopy

  • She, Chun-Xing;Xiang, Juann;Ren, Bin;Zhong, Qi-Ling;Wang, Xiao-Cong;Tian, Zhong-Qun
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.221-225
    • /
    • 2002
  • Assisted by the highly sensitive confocal microprobe Raman spectrometer and proper surface roughening procedure, the Raman investigation on the adsorption and reaction of methanol was performed on Pt-Ru electrodes with different coverages. A detailed description of the roughening process of the Pt electrodes and the underpotential deposition of the Ru was given. Reasonably good Raman signal reflecting the metal-carbon vibration and CO vibration was detected. The appearance of vibrations of the Ru oxides, together with the existence of Ru-C, Pt-C and CO bands, clearly demonstrates the participation of the bi-functional mechanism during the oxidation process of methanol on Pt-Ru electrodes. The Pt-Ru electrode was found to have a higher catalytic activity over Pt electrodes. This preliminary study shows that electrochemical Raman spectroscopy can be applied to the study of rough electrode surface.

Investigation of Catalytic Activity Through Controlling Its Size and Composition of RhPt Bimetallic Nanoparticles (RhPt 이종금속 나노입자의 크기 및 조성 제어를 통한 촉매 활성도에 관한 연구)

  • Park, Jeong-Young;Kim, Sun-Mi
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.538-545
    • /
    • 2011
  • This study shows that catalytic activity of bimetallic RhPt nanoparticle arrays under CO oxidation can be tuned by varying the size and composition of nanoparticles. The tuning of size of RhPt nanoparticles was achieved by changing concentration of rhodium and platinum precursors in one-step polyol synthesis. Two-dimensional RhPt bimetallic nanoparticle arrays in different size and composition were prepared through Langmuir-Blodgett thin film technique. CO oxidation was carried out on these two-dimensional nanoparticle arrays, revealing higher activity on the smaller nanoparticles compared to the bigger nanoparticles. X-ray photoelectron spectroscopy (XPS) results indicate the preferential surface segregation of Rh compared to Pt on the smaller nanoparticles, which is consistent with the thermodynamic analysis. Because the catalytic activity is associated with differences in the rates of $O_2$ dissociative adsorption between Pt and Rh, this paper suppose that the surface segregation of Rh on the smaller bimetallic nanoparticles is responsible for the higher catalytic activity in CO oxidation. This result suggests a control mechanism of catalytic activity via synthetic approaches of colloid nanoparticles, with possible application in rational design of nanocatalysts.

Vp28 of Shrimp White Spot Syndrome Virus Is Involved in the Attachment and Penetration into Shrimp Cells

  • Yi, Guohua;Wang, Zhimin;Qi, Yipeng;Yao, Lunguang;Qian, Juan;Hu, Longbo
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.726-734
    • /
    • 2004
  • White spot disease (WSD) is caused by the white spot syndrome virus (WSSV), which results in devastating losses to the shrimp farming industry around the world. However, the mechanism of virus entry and spread into the shrimp cells is unknown. A binding assay in vitro demonstrated VP28-EGFP (envelope protein VP28 fused with enhanced green fluorescence protein) binding to shrimp cells. This provides direct evidence that VP28-EGFP can bind to shrimp cells at pH 6.0 within 0.5 h. However, the protein was observed to enter the cytoplasm 3 h post-adsorption. Meanwhile, the plaque inhibition test showed that the polyclonal antibody against VP28 (a major envelope protein of WSSV) could neutralize the WSSV and block an infection with the virus. The result of competition ELISA further confirmed that the envelope protein VP28 could compete with WSSV to bind to shrimp cells. Overall, VP28 of the WSSV can bind to shrimp cells as an attachment protein, and can help the virus enter the cytoplasm.

Antiviral Effect of Amphotericin B on Japanese Encephalitis Virus Replication

  • Kim, Hun;Kim, Seong-Jun;Park, Sue-Nie;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.121-127
    • /
    • 2004
  • Amphotericin B (AmB), an amphipathic polyene macrolide, is an antifungal drug produced by Streptomyces nodosus. Recently, AmB has been shown to exert antiviral activity against rubella virus and human immunodeficiency virus by different mechanisms. In this study, we evaluated the antiviral effect of AmB against Japanese encephalitis virus (JEV) and investigated which step of the viral life cycle was inhibited by AmB to understand the mechanism of antiviral action of AmB. AmB reduced both plaque size and number in the infected cells in a dose-dependent manner. In addition, a 200-fold reduction of infectious virus titer was observed by treatment of infected cells with $5\mug/ml$ of AmB. AmB acted at the post virus-infection step, but not during adsorption of virus to host cells. Western blot analysis revealed that the accumulated level of JEV envelope protein dramatically decreased in the infected cells by treatment with $5-10\mug/ml$ of AmB. Our results indicate that AmB inhibits the replication of JEV at the postinfection step by interfering with viral replication and/or by inhibiting the synthesis of viral proteins.

Iron-loaded Natural Clay as Heterogeneous Catalyst for Fenton-like Discoloration of Dyeing Wastewater

  • Xu, Huan-Yan;Ha, Xiu-Lan;Wu, Ze;Shan, Lian-Wei;Zhang, Wei-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2249-2252
    • /
    • 2009
  • The clay-based Fe-bearing catalyst was successfully prepared through ion-exchange reaction and applied as heterogeneous catalyst for discoloration of acid fuchsine (AF) in an aqueous solution by Fenton-like reaction. Experimental results demonstrated that the AF discoloration ratios increased by increasing Fe-loaded clay dosage and initial $H_2O_2$ concentration, and by decreasing the pH, respectively. The lower the initial AF concentration, the shorter the reaction time needed to achieve complete discoloration of AF. Comparative studies indicated that AF discoloration ratios were much higher in presence of Fe-loaded clay and $H_2O_2$ than those in presence of $H_2O_2$, raw natural clay or Fe-loaded clay only and raw natural clay and $H_2O_2$ jointly. After AF discoloration, there existed no new phases in the clay samples detected by XRD and no change in the clay crystal morphology observed by SEM. A mechanism proposed suggested adsorption and Fenton-like reaction were responsible for discoloration of AF.

Preparation and Characterization of PP-g-Poloxamer Membranes by UV Irradiation Methods and their Solutes Permeation Behaviors

  • Lee, S. H.;Shim, J. K.;Lee, Y. M.;Ahn, S. H.;Yoo, I. K.;Baek, K. H.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.97-98
    • /
    • 1998
  • 1. Introduction : Polypropylene(PP) membrane is widely used in the field of microfiltration and ultrafiltration. However, the hydrophobicity of PP causes the adsorption of hydrophobic and amphoteric solutes in the feed. Surface modification techniques of membrane through the treatment of hydrophilizing agents, coating of hydrophilic compounds, UV, plasma and high energy irradiation, etc. can have a great effect on propensities to prevent the protein from staining membranes. Among them, the modification to hydophilize membrane surface using UV is very simple and effective. Recently many studies for more effective surface modification have been conducted. Iwata et al. prepared membranes by grafting polyethylene glycol diacrylate macromer(PEGDA) onto polysulfone with plasma using a glow discharge reactor which prevent the oil from staining the membrane. The primary mechanism contributing to the membranes is preventing the oil from directly contacting the surface of the membrane as the PEGDA chains dissolved into emulsion. To evaluate their feasibility for use as a anti-fouling separation membrane, we prepared hydrophilic membranes by UV irradiation method and investigated their characteristics.

  • PDF

Mechanism of Metal Ion Binding to Chitosan in Solution. Cooperative Inter- and Intramolecular Chelations

  • Joon Woo Park;Myung Ok Park;Kwanghee Koh Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.108-112
    • /
    • 1984
  • Interactions between metal ions and chitosan in solution were studied by spectroscopic and viscometric measurements. $Cu^{++}$-chitosan complex exhibited an absorption band at 265 nm, whereas D-glucosamine complex showed one at 245 nm. The difference in ${\lambda}_{max}$ was attributed to the different amine to $Cu^{2+}$ ratios of the complexes, that is, 2 : 1 for chitosan and 1 : 1 for D-glucosamine. The molar absorptivities and binding constants of the complexes were evaluatatled. The binding of $Cu^{2+}$ to chitosan was cooperative near pH 5, and both intra- and intermolecular chelations depending on chitosan and $Cu^{2+}$concentrations were observed, The intermolecular chelation was stabilized by addition of salts. The cooperative intermolecular chelation of $Ni^{++}$ was also observed at pH 6.2. No significant binding of other divalent ions was observed. The reported high adsorption abilities of chitosan particles for these ions were attributed to the deposition of metal hydroxide aggregates in pores of chitosan particles rather than chelation to amine groups.

The Characteristics of Bacteriophage-resistant Lactococcus lactis subsp. cremoris ATCC 11602-A1 (Lactococcus lactis subsp. cremoris ATCC 11602의 Bacteriophage 내성균주 A1의 특성에 관한 연구)

  • Lee, Chun-Hwa;Kang, Kuk-Hee;Bae, In-Hyu
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.293-298
    • /
    • 1993
  • The ppage resistance mechanism of Lactococcus lactis subsp. cremoris ATCC 11602-A1 was investigated. When parent and A1 were incubated at 30 and 40$^{\circ}C$, A1 grew well and multiplication of phage(MOI=1)on A1 slightly occurred at 40$^{\circ}C$ in contrast with parent. There was a great difference of proteolytic activity between parent and A1, irrespective of the temperature. As a result of ADS treatment oon culture broth, survival rate of A1 was 27% at the lethal concentration of parent and adsorption rate of phage was increased to 95~97%, which was considered to come from the exposure of phage receptor site masked by an unknown component. These results suggest that acridine orange (AO) treatment leads to the modification of cell wall, conferring resistance to high temperature and lytic phage. No change in plasmid profiles of A1 at 30 and 40$^{\circ}C$ were found, which suggests that plasmid is not relative to temperature-resistance of A1.

  • PDF

Characterization of Natural Organic matter by Rapid Mixing Condition (급속교반조건에서 Alum 응집제의 가수분해종 분포특성과 유기물특성변화)

  • Song, Yu-Kyung;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.559-571
    • /
    • 2006
  • The overall objective of this research was to find out the interrelation of coagulant and organic matter during rapid mixing process and to identify the change of organic matter by mixing condition and to evaluate the effect of coagulation pH. During the coagulation, substantial changes in dissolved organics must be occurred by coagulation due to the simultaneous formation of microflocs and NOM precipitates. Increase in the organic removal efficiency should be mainly caused by the removal of microflocs formed during coagulant injection. That is, during the mixing period, substantial amount of dissolved organics were transformed into microflocs due to the simultaneous formation of microflocs and NOM precipitates. The results also showed that 40 to 80% of dissolved organic matter was converted into particulate material after rapid mixing process of coagulation. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) constant by rapid mixing condition, but for raw water, the species of Al hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_3(s)$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

Pre-treatment of textile wastewaters containing Chrysophenine using hybrid membranes

  • lehi, Arash Yunessnia;Mousavirad, Seyed Jalaleddin;Akbari, Ahmad
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.89-112
    • /
    • 2017
  • Dyeing wastewaters are the most problematic wastewater in textile industries and also, growing amounts of waste fibers in carpet industries have concerned environmental specialists. Among different treatment methods, membrane filtration processes as energy-efficient and compatible way, were utilized for several individual problems. In this research, novel hybrid membranes were prepared by waste fibers of mechanical carpets as useful resource of membrane matrix and industrial graphite powder as filler to eliminate Chrysophenine GX from dyeing wastewater. These membranes were expected to be utilized for first stage of hybrid membrane filtration process including (adsorption-ultrafiltration) and nanofiltration in Kashan Textile Company. For scaling of membrane filtration process, fouling mechanism of these membranes were recognized and explained by the use of genetic algorithm, as well. The graphite increased rejection and diminished permeate flux at low concentration but in high concentration, the performance was significantly worsened. Among all hybrid membranes, 18% wt. waste fibers-1% wt. graphite membrane had the best performance and minimum fouling. The maximum pore size of this optimum membrane was ranged from 16.10 to 18.72 nm.