Browse > Article

Antiviral Effect of Amphotericin B on Japanese Encephalitis Virus Replication  

Kim, Hun (Department of Biotechnology, Yonsei University, Korea Food and Drug Administration)
Kim, Seong-Jun (Department of Biotechnology, Yonsei University)
Park, Sue-Nie (Korea Food and Drug Administration)
Oh, Jong-Won (Department of Biotechnology, Yonsei University)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.1, 2004 , pp. 121-127 More about this Journal
Abstract
Amphotericin B (AmB), an amphipathic polyene macrolide, is an antifungal drug produced by Streptomyces nodosus. Recently, AmB has been shown to exert antiviral activity against rubella virus and human immunodeficiency virus by different mechanisms. In this study, we evaluated the antiviral effect of AmB against Japanese encephalitis virus (JEV) and investigated which step of the viral life cycle was inhibited by AmB to understand the mechanism of antiviral action of AmB. AmB reduced both plaque size and number in the infected cells in a dose-dependent manner. In addition, a 200-fold reduction of infectious virus titer was observed by treatment of infected cells with $5\mug/ml$ of AmB. AmB acted at the post virus-infection step, but not during adsorption of virus to host cells. Western blot analysis revealed that the accumulated level of JEV envelope protein dramatically decreased in the infected cells by treatment with $5-10\mug/ml$ of AmB. Our results indicate that AmB inhibits the replication of JEV at the postinfection step by interfering with viral replication and/or by inhibiting the synthesis of viral proteins.
Keywords
Japanese encephalitis virus; amphotericin B; antiviral drug; real-time RT-PCR; plaque assay; cytopathic effect;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ablordeppey, S. Y., P. Fan, J. H. Ablordeppey, and L. Mardenborough. 1999. Systemic antifungal agents against AIDSrelated opportunistic infections: Current status and emerging drugs in development. Curr. Med. Chem. 6: 1151-1195
2 Aloia, R. C., H. Tian, and F. C. Jensen. 1993. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc. Natl. Acad. Sci. USA 90: 5181-5185
3 Igarashi, A. 1992. Epidemiology and control of Japanese encephalitis. World Health Stat. Q 45: 299-305
4 Kerridge, D. 1986. Mode of action of clinically important antifungal drugs. Adv. Microb. Physiol. 27: 1-72
5 Su, H. L., C. L. Liao, and Y. L. Lin. 2002. Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J. Virol. 76: 4162- 4171
6 Trajkovic, V., M. Markovic, T. Samardzic, D. J. Miljkovic, D. Popadic, and M. M. Stojkovic. 2001. Amphotericin B potentiates the activation of inducible nitric oxide synthase and causes nitric oxide-dependent mitochondrial dysfunction in cytokine-treated rodent astrocytes. Glia 35: 180-188
7 Konopka, K., L. S. Guo, and N. Duzgunes. 1999. Anti-HIV activity of amphotericin B-cholesteryl sulfate colloidal dispersion in vitro. Antiviral Res. 42: 197-209
8 Umino, Y. and M. Tashiro. 2001. Inhibition of rubella virus growth by Fungizone. Vaccine 19: 1369-1372
9 Rice, C. M. 1996. Flaviviridae: the viruses and their replication, pp. 931-959. In B. N. Fields, D. M. Knipe, and P. M. Howley (eds.), Fields Virology, 3rd ed. Lippincott- Raven Publishers, Philadelphia, PA. U.S.A
10 Chambers, T. J., C. S. Hahn, R. Galler, and C. M. Rice. 1990. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 44: 649-688
11 Arroyo, J., F. Guirakhoo, S. Fenner, Z. X. Zhang, T. P. Monath, and T. J. Chambers. 2001. Molecular basis for attenuation of neurovirulence of a yellow fever virus/ Japanese encephalitis virus chimera vaccine (ChimeriVax- JE). J. Virol. 75: 934-942
12 Schroter, M., B. Zollner, P. Schafer, R. Laufs, and H. H. Feucht. 2001. Quantitative detection of hepatitis C virus RNA by light cycler PCR and comparison with two different PCR assays. J. Clin. Microbiol. 39: 765-768
13 Baginski, M., H. Resat, and E. Borowski. 2002. Comparative molecular dynamics simulations of amphotericin B-cholesterol/ ergosterol membrane channels. Biochim. Biophys. Acta 1567: 63-78
14 Choi, W.-C., S.-Y. Hwang, T.-K. Park, and S.-K. Kim. 2002. Identification of Streptomyces sp. producing new polyene antibiotics and in vivo antimicrobial activity of tetrin C against phytopathogenic fungi. J. Microbiol. Biotechnol. 12: 204-208
15 Bolard, J. 1986. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta 864: 257-304
16 Lee, C.-H., B.-J. Kim, G. J. Choi, K. Y. Cho, H. Yang, C. Shin, S. Min, and Y. Lim. 2002. Streptomyces with antifungal activity against rice blast causing fungus, Magnaporthe grisea. J. Microbiol. Biotechnol. 12: 1026-1028
17 Fournier, I., J. Barwicz, and P. Tancrede. 1998. The structuring effects of amphotericin B on pure and ergosterolor cholesterol-containing dipalmitoylphosphatidylcholine bilayers: A differential scanning calorimetry study. Biochim. Biophys. Acta 1373: 76-86
18 Pleskoff, O., M. Seman, and M. Alizon. 1995. Amphotericin B derivative blocks human immunodeficiency virus type 1 entry after CD4 binding: Effect on virus-cell fusion but not on cell-cell fusion. J. Virol. 69: 570-574
19 Kessler, H. A., J. Dixon, C. R. Howard, K. Tsiquaye, and A. J. Zuckerman. 1981. Effects of amphotericin B on hepatitis B virus. Antimicrob. Agents Chemother. 20: 826-833