• Title/Summary/Keyword: Mechanism Analysis

Search Result 8,014, Processing Time 0.033 seconds

Mechanism Analysis of Thermal Overload Relay (열동형 과부하 계전기의 메커니즘 해석)

  • Lee, Kyung-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.287-289
    • /
    • 1999
  • This paper proposes mechanism analysis in thermal overload relay. Overload protection performance is closely connected with mechanism of thermal overload relay. In shortage of analytical technique, we have experienced many difficulties in development of thermal overload relay. We applied analytical results to develop optimum thermal overload relay.

  • PDF

Aeroelastic Analysis in Frequency Domain for Wings with Double-Folding Mechanism (주파수 영역에서의 2단 접는 날개 공탄성 해석)

  • Kang, Myung-Koo;Kim, Ki-Un
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.104-113
    • /
    • 2006
  • To identify aeroelastic characteristics of wings with double-folding mechanism, aeroelastic analyses are performed. There are four wing models which consist of one linear model and three nonlinear models. The nonlinear models have one or two freeplay nonlinearties. The describing function method is used to approximately examine nonlinear effects. The aeroelastic module in MSC/NASTRAN is used to study the aeroelastic characteristics of the considered wing models. The effects of the folding mechanism and amplitude ratio are examined. As the amplitude ratio increases, the flutter speeds approach to those of the wing model with only one nonlinearity. The numerical results show that the flutter speeds of the wings with double-folding mechanism can be lower or higher than those of the wing model with only one folding mechanism depending upon the direction of the second folding mechanism.

Study of Spring Modeling Techniques for Kinematic and Dynamic Analysis of a Spring Operating Mechanism for the Circuit Breaker (회로차단기용 스프링조작기의 기구동역학 해석을 위한 스프링모델링 기법 연구)

  • Sohn, Jeong-Hyun;Lee, Seung-Kyu;Kim, Seung-Oh;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.777-783
    • /
    • 2007
  • Since the performance of the circuit breaker mainly depends on the spring operating mechanism, the analysis of the spring operating mechanism is required. The spring, especially closing spring, stores the deformation energy due to the compression and then accelerates the big loads rapidly in the circuit breaker. To accurately carry out the kinematic and dynamic analysis of the circuit breaker, the precise modeling of the spring behavior is necessary. In this paper, the static stiffness of the spring is captured by using the tester. A simple mechanism similar to the spring operating mechanism was designed to generate the release motion of the spring. A high speed camera was used to capture the behavior of the spring. Three types of spring models such as a linear spring model, modal spring model, and nodal spring model are suggested and compared with the experimental results.

A Study on the Analysis Method of ICT Policy Triggering Mechanism Using Social Big Data (소셜 빅데이터 특성을 활용한 ICT 정책 격발 메커니즘 분석방법 제안)

  • Choi, Hong Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1192-1201
    • /
    • 2021
  • This study focused on how to analyze the ICT policy formation process using social big data. Specifically, in this study, a method for quantifying variables that influenced policy formation using the concept of a policy triggering mechanism and elements necessary to present the analysis results were proposed. For the analysis of the ICT policy triggering mechanism, variables such as 'Scope', 'Duration', 'Interactivity', 'Diversity', 'Attention', 'Preference', 'Transmutability' were proposed. In addition, 'interpretation of results according to data level', 'presentation of differences between collection and analysis time points', and 'setting of garbage level' were suggested as elements necessary to present the analysis results.

A Study on the Reduction of Reaction Mechanism for the Ignition of Dimethyl Ether (디메틸 에테르 착화에 관한 반응기구 축소 연구)

  • Ryu, Bong-Woo;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • The numerical analysis of the reduction of reaction mechanism for the ignition of dimethyl ether (DME) was performed. On the basis of a detailed reaction mechanism involving 79 species and 351 reactions, the peak molar concentration and sensitivity analysis were conducted in a homogeneous reactor model. The reduced reaction mechanism involving 44 species and 166 reactions at the threshold value $7.5{\times}10^{-5}$ of the molar peak concentration was established by comparing the ignition delays the reduced mechanism with those the detailed mechanism. The predicted results of the reduced mechanism applied to the single-zone homogeneous charge compression ignition (HCCI) engine model were in agreement with those of the detailed mechanism. Therefore, this reduced mechanism can be used to accurately simulate the ignition and combustion process of compression ignition engine using DME fuel.

Computer aided design of six-revolute-pair mechanism and its torque analysis (콤퓨터에 의한 륙절기구의 설계와 토오크 해석)

  • 배순홍;정순길
    • Journal of the KSME
    • /
    • v.16 no.2
    • /
    • pp.77-83
    • /
    • 1976
  • A computer aided design of a Stephenson type of Chained six-link mechanism with synthesis equations of the precision positions technigue to generate a required point path is presented. Analysis of this mechanism is carried out by the matrix method. The torque on the input link required to operate the mechanism was obtained by considering inertia and gravity forces of the coupler link.

  • PDF

Dimensional Syntheris and Kinematic Analysis of RSCS-SSP Spatial Mechanism with use of the Displacement Matrix Method (변위행렬법을 이용한 RSCS-SSP 공간기구의 치수합성과 운동해석)

  • 강희용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.113-118
    • /
    • 1997
  • This paper presents the dimensional synthesis and kinematic analysis of the RSCS-SSP motion generating spatial mechanism using the displacement matrix method. This type of spatial mechanisms is used for the Mcpherson suspension in small automobiles. It is modeled for the wheel bump/rebound and steering motion. First, the suspension is modeled as a multiloop spatial rigid body guidance mechanism for the two major motions. Then the design equations for SSP, RS, and SC strut links are applied to synthesize an RSCS-SSP for up to three prescribed positions for the steering motiom from the suspension design specification. Thus a RSCS-SSP mechanism which is synthesized is also analyzed for the displacement during the steering motion.

  • PDF

Mechanism Analysis of Working Equipment and Development of Hydraulic System for Rice Transplanter for Riding (승용이앙기 작업부의 기구 해석 및 유압회로 개발)

  • Kim S.Y.;Lee K.S.;Hwang H.;Lee S.S.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.88-94
    • /
    • 2006
  • The market of rice transplanter has already been changed for riding and to be turned large size of chassis. Because an automation is rapidly expanded, It is strongly need to analyze a mechanism and develop a hydraulic circuit. In this study, we analyzed the mechanism of working equipment of rice transplanter for riding and developed hydraulic circuits. We proposed the operating mechanism of rice transplanter for riding through the mechanistic analysis of working equipment. And the simulation and experiment were performed. In order to up and down the working equipment of rice transplanter for riding, we designed the mechanism which was installed hydraulic circuit and hydraulic cylinder, and it was manufactured. The pressure of developed hydraulic circuit was set by 800 $N/cm^2$. In the field testing, the hydraulic response presented at 50 msec in the maximum driving velocity, 0.8 m/sec of rice transplanter for riding, and it was well performed. The results of experiments showed the system characteristics sufficient to use as the hydraulic mechanism for a rice transplanter for riding.

Analysis of the Redundant Actuation Characteristics of the Planar 3-DOF Parallel Mechanism (평면형 3자유도 병렬 메커니즘의 여유 구동 특성 분석)

  • Jeon, Jung In;Oh, Hyun Suk;Woo, Sang Hun;Kim, Sung Mok;Kim, Min Gun;Kim, Whee Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.194-205
    • /
    • 2017
  • A redundantly actuated planar 3-degree-of-freedom parallel mechanism is analyzed to show its high application potential as a haptic device. Its structure along with the closed form forward position solutions is briefly discussed. Then its geometric and kinematic characteristics via singularity analysis, the kinematic isotropy index, and the input-output force transmission ratio are investigated both for the redundantly actuated cases and for the non-redundantly actuated case. In addition, comparative joint torque simulations of the mechanism with different number of redundant actuations as well as without redundant actuation are conducted to confirm the improved joint torque distribution characteristics. Through these analyses it is shown that the geometric and kinematic characteristics of the redundantly actuated mechanism are superior to the ones of the mechanism without redundant actuation. Thus, it can be concluded that the suggested planar mechanism with redundant actuation has a very high potential for haptic device applications.

Stiffness Analysis in a Redundantly Actuated Four-Bar Mechanism (잉여구동을 지닌 4절 기구에서의 강성효과에 대한 해석)

  • 이병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.846-855
    • /
    • 1994
  • An effective stiffness, analogous to that of a wound spring, can be created by antagonistic redundant actuation of general closed-chain mechanisms. The qualitative and quantitative characteristics of the effective stiffness are investigated through a Four-bar mechanism, and a load distribution method is introduced which simultaneously guarantees the required system motion and the effective stiffness of the Four-bar mechanism. Furthermore, a simulation is performed to understand the inter-relationship among the effective stiffness, the Four-bar geometry, and the actuation effort. Based on this analysis, the Four-bar synthesis problem for effective stiffness generation is discussed.