• Title/Summary/Keyword: Mechanically assembled

Search Result 9, Processing Time 0.01 seconds

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part II

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.96-102
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane headgroups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study directly observed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To observe this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various stress conditions and force profiles in pure water were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in pure water, there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. In particular, the protrusion behavior of the monolayer during contact repetition experiment was always observed in the untreated case, but never in the plasma treated case. It directly demonstrates that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part I

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane head-groups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study clearly showed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To examine this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various physical conditions (relative humidity, high stress, and contact repetition) were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in highly humid conditions (>90%RH), there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. It obviously proves that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

Mechanical removal of surface residues on graphene for TEM characterizations

  • Dong-Gyu Kim;Sol Lee;Kwanpyo Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.28.1-28.6
    • /
    • 2020
  • Contamination on two-dimensional (2D) crystal surfaces poses serious limitations on fundamental studies and applications of 2D crystals. Surface residues induce uncontrolled doping and charge carrier scattering in 2D crystals, and trapped residues in mechanically assembled 2D vertical heterostructures often hinder coupling between stacked layers. Developing a process that can reduce the surface residues on 2D crystals is important. In this study, we explored the use of atomic force microscopy (AFM) to remove surface residues from 2D crystals. Using various transmission electron microscopy (TEM) investigations, we confirmed that surface residues on graphene samples can be effectively removed via contact-mode AFM scanning. The mechanical cleaning process dramatically increases the residue-free areas, where high-resolution imaging of graphene layers can be obtained. We believe that our mechanical cleaning process can be utilized to prepare high-quality 2D crystal samples with minimum surface residues.

A Multi-chip Microelectrofluidic Bench for Modular Fluidic and Electrical Interconnections (전기 및 유체 동시접속이 가능한 멀티칩 미소전기유체통합벤치의 설계, 제작 및 성능시험)

  • Chang Sung-Hwan;Suk Sang-Do;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.373-378
    • /
    • 2006
  • We present the design, fabrication, and characterization of a multi-chip microelectrofluidic bench, achieving both electrical and fluidic interconnections with a simple, low-loss and low-temperature electrofluidic interconnection method. We design 4-chip microelectrofluidic bench, having three electrical pads and two fluidic I/O ports. Each device chip, having three electrical interconnections and a pair of two fluidic I/O interconnections, can be assembled to the microelectofluidic bench with electrical and fluidic interconnections. In the fluidic and electrical characterization, we measure the average pressure drop of $13.6{\sim}125.4$ Pa/mm with the nonlinearity of 3.1 % for the flow-rates of $10{\sim}100{\mu}l/min$ in the fluidic line. The pressure drop per fluidic interconnection is measured as 0.19kPa. Experimentally, there are no significant differences in pressure drops between straight channels and elbow channels. The measured average electrical resistance is $0.26{\Omega}/mm$ in the electrical line. The electrical resistance per each electrical interconnection is measured as $0.64{\Omega}$. Mechanically, the maximum pressure, where the microelectrofluidic bench endures, reaches up to $115{\pm}11kPa$.

A Study on Development of Bezelless Digital Signage Using Light Guide Film (광가이드 필름을 이용한 베젤리스 디지털 사이니지 구현에 관한 연구)

  • Park, Jae-Soon;Kim, Eung-Bo;Kang, Young-Hwan;Choi, Won Seok;Joung, Yeun-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.51-54
    • /
    • 2016
  • This paper present a method which resolves an optical discontinuity in bezel of digital signage using light guide film. On a polycarbonate film, a light guide film is bonded to produce refraction, reflection, diffraction of light. Arc shaped light guide film is assembled on the top LED light sources (red and green) to see light propagation through the film. When the two light sources (red and green) are mechanically attached at the end of the film, optical convergence brings new colors which have light wavelength between red and green. This result indicates that the light waveguide method could solve the light discontinuity on bezel of the digital signage system.

Wear Problem Improvement Manufacture Technology of Ignitor Tip Component Using 3D Printing Technology (발전소 점화자 팁 부품의 마모 문제 해결을 위한 3D 프린팅 기술을 이용한 부품 제조기술개발)

  • Lee, Hye-Jin;Yeon, Simo;Son, Yong;Lee, Nak-Kyu
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.35-40
    • /
    • 2016
  • Ignitor tip is a component of burner to start the burning process in power plant. This is used to ignite the coal to a constant operating state by fuel mixed with air and kerosene. This component is composed of three components so that air and kerosene are mixed in the proper ratio and injected uniformly. Because the parts with the designed shape are manufactured in the machining process, they have to be made of three parts. These parts are designed to have various functions in each part. The mixing part mixes the supplied air and kerosene through the six holes and sends it to the injecting part at the proper ratio. The inject part injects mixed fuel, which is led to have a constant rotational direction in the connecting part, to the burner. And the connecting plate that the mixed fuel could rotate and spray is assembled so that the flame can be injected uniformly. But this part causes problems that are worn by vibration and rotation because it is mechanically assembled between the mixing part and the inject part. In this study, 3D printing method is used to integrate a connecting plate and an inject part to solve this wear problem. The 3D printing method could make this integrated part because the process is carried out layer by layer using a metal powder material. The part manufactured by 3D printing process should perform the post process such as support removal and surface treatment. However, while performing the 3D printing process, the material properties of the metal powders are changed by the laser sintering process. This change in material properties makes the post process difficult. In consideration of these variables, we have studied the optimization of manufacturing process using 3D printing method.

A Study on the Lifetime Estimation and Leakage Test of Rubber O-ring in Contacted with Fuel at Accelerated Thermal Aging Conditions (가속노화조건 하 연료접촉 고무오링의 수명예측 및 누유시험 연구)

  • Chung, Kunwoo;Hong, Jinsook;Kim, Young-wun;Han, Jeongsik;Jeong, Byunghun;Kwon, Youngil
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.222-228
    • /
    • 2019
  • As rubber products such as O-rings, which are also known as packings or toric joints, come in regular, long term contact with liquid fuel, they can eventually swell, become mechanically weakened, and occasionally crack; this diminishes both their usefulness and intrinsic lifetime and could cause leaks during the steady-state flow condition of the fuel. In this study, we evaluate the lifetime of such products through compression set tests of FKM, a family of fluorocarbon elastomer materials defined by the ASTM international standard D141; these materials have great compression, sunlight, and ozone resistance as well as a low gas absorption rate. In this process, O-rings are immersed in the liquid fuel of airtight containers that can be expressed as a compression set, and the liquid fuel leakage in a flow rig tester at variable temperatures over 12 months is investigated. Using the Power Law model, our study determined a theoretical O-ring lifetime of 2,647 years, i.e. a semi-permanent lifespan, by confirming the absence of liquid fuel leakage around the O-ring assembled fittings. These results indicate that the FKM O-rings are significantly compatible for fuel tests to evaluate long-term sealing conditions.