• Title/Summary/Keyword: Mechanical wear

Search Result 1,760, Processing Time 0.025 seconds

Effect of grain refinement on the performance of AZ80 Mg alloys during wear and corrosion

  • Naik, Gajanan M;Gote, Gopal D.;Narendranath, S;Kumar, S.S. Satheesh
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.105-118
    • /
    • 2018
  • Magnesium and its alloys are attracted towards all engineering applications like automotive, marine, aerospace etc. due to its inherent high strength to weight ratio. But, extensive use of Mg alloys is limited to the current scenario because of low wear and corrosion resistance behavior. However, equal channel angular press is one of the severe plastic deformation technique which has been effective method to improve the wear and corrosion resistance by achieving fine grain structure. In this study, the effect of grain refinement on wear and corrosion resistance of AZ80 Mg alloys were investigated. The wear behavior of the coarse and fine-grained Mg alloys was examined through $L_9$ orthogonal array experiments in order to comprehend the wear behavior under varies control parameters. It was shown that ECAPed alloy increased the wear and corrosion resistance of the Mg alloy through the formation of fine grain and uniform distribution of secondary ${\beta}-phase$. Also, the performance of AZ80 Mg alloy for these changeswas discussed through SEM morphology.

Ferrography에 의한 마멸분 정량분석

  • O, Seong-Mo;Lee, Bong-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2420-2427
    • /
    • 2000
  • In contacting between surface, there is wear and the generation of wear particles. The particles contained in the lubricating oil carry detailed and important information about the condition monitoring of the machine. Therefore, This paper was undertaken for Ferrography system of wear debris generated from lubricated moving machine surface. The lubricating wear test was performed under different experimental conditions using the Falex wear test of Pin and V-Block type by Ti(C,N) coated. It was shown from the test results that wear particle concentration(WPC) ; wear severity Index(IS) and size\distribution have come out all the higher value by increases sliding friction time. By the Ferrogram a thin leaf wear debris as well as ball and plate type wear particles was observed.

Real Time Analysis of Friction/Wear Characteristics of Metal Coatings with a Tribo-tester Installed in an SEM (SEM 내부에 설치된 트라이보 시험기를 통한 금속 코팅의 실시간 마찰/마모 특성 분석)

  • Kim, Hae-Jin;Kim, Dae-Eun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.318-324
    • /
    • 2018
  • This study aims to visualize the friction and wear behaviors of metal coatings in real time. The main mechanism of wear is identified by observing all the processes in which wear occurs. The friction coefficients of the moments are monitored to confirm the relationship between the friction and wear characteristics of the coating. Thin Ag coatings, which are several hundred nanometers in thickness, are prepared by depositing Ag atoms on silicon substrates through a sputtering method. A pin-on-disk-type tribo-tester is installed inside a scanning electron microscope (SEM) to evaluate the friction and wear characteristics of the Ag coating. A fine diamond pin is brought into contact with the Ag coating surface, and a load of 20 mN is applied. The contact pressure is calculated to be approximately 15 GPa. The moments of wear caused by the sliding motion are visualized, and the changes in the friction characteristics according to each step of wear generation are monitored. The Ag coating can be confirmed to exhibit a wear phenomenon by gradually peeling off the surface of the coating on observing the friction and wear characteristics of the coating in real time inside the SEM. This can be explained by a typical plowing-type wear mechanism.

Finite Element Model for Wear Analysis of Conventional Friction Stir Welding Tool

  • Hyeonggeun Jo;Ilkwang Jang;Yeong Gil Jo;Dae Ha Kim;Yong Hoon Jang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.118-122
    • /
    • 2023
  • In our study, we develop a finite element model based on Archard's wear law to predict the cumulative wear and the evolution of the tool profile in friction stir welding (FSW) applications. Our model considers the rotational and translational behaviors of the tool, providing a comprehensive description of the wear process. We validate the accuracy of our model by comparing it against experimental results, examining both the predicted cumulative wear and the resulting changes to the tool profile caused by wear. We perform a detailed comparison between the predictions of the model and experimental data by manipulating non-dimensional coefficients comprising model parameters, such as element sizes and time increments. This comparison facilitates the identification of a specific non-dimensional coefficient condition that best replicates the experimentally observed cumulative wear. We also directly compare the worn tool profiles predicted by the model using this specific non-dimensional coefficient condition with the profiles obtained from wear experiments. Through this process, we identify the model settings that yield a tool wear profile closely aligning with the experimental results. Our research demonstrates that carefully selecting non-dimensional coefficients can significantly enhance the predictive accuracy of finite element models for tool wear in FSW processes. The results from our study hold potential implications for enhancing tool longevity and welding quality in industrial applications.

Effect of Load and Sliding Speed on Corrosive Wear of Metals in Seawater

  • Kawazoe, T.;Ura, A.;Nakashima, A.;Moritaka, H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.245-246
    • /
    • 2002
  • The objective of this study is to evaluate corrosive wear resistance of metals used for bearings and gears in seawater. Sliding wear test of ferrous and copper materials against $Al_2O_3$ were carried out in artificial seawater using an electrochemical potentiostat. As the results, the wear rate and the coefficient of friction of the copper materials are lower than those of the ferrous materials. The corrosive wear of stainless steel is remarkably affected by normal load and sliding speed in view of tribological characteristics including adhesion and corrosion products.

  • PDF

Evaluation of the Wear Resistance of PVD Coatings on Drills by Using a Slurry Jet Impact Test

  • Iwai, Y.;Ueno, Y.;Suehiro, T.;Honda, T.;Hogmark, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.141-142
    • /
    • 2002
  • In this paper, we propose a slurry jet (water containing $1\;{\mu}m$ alumina particles) impact test in order to quickly evaluate the wear properties of physical vapor deposited (PVD) coatings on commercial cutting tools. Linear wear was obtained for bothe coating and substrate material, and the penetration through the coating into the substrate was signified by a sharp increase in slope of the wear versus time curve. The PVD coatings deposited on the tools showed the same wear rates as those on reference plate specimens produced by the same coating methods. We conclude that our proposed evaluation technique for coatings is considerably useful as a screening test when evaluating coated tools like twist drills, taps, end mills, gear hobs, etc.

  • PDF

A Study on Wear Characteristics of Degraded Stainless Steel (열화된 스테인리스강의 마모특성에 관한 연구)

  • Cho, Sung-Duck;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.21-30
    • /
    • 2017
  • This study deals with the characteristics of degraded stainless steel. Stainless steel is heat treated to ensure mechanical properties when designing or manufacturing machinery parts or equipment. In this study, the mechanical properties and wear characteristics of three kinds of stainless steels after artificially heat-treated at 753 K~993 K, where chrome depletion occurs near the grain boundary, were evaluated. The microstructure and fracture surface were also observed. From the results, friction coefficient and wear loss decreased with increasing the heat treatment temperature regardless of the type of stainless steel. Also, as the tensile strength increased, the friction coefficient and wear loss decreased. Wear loss showed proportional to a tendency to increase with increasing friction coefficient.

Nano-Wear and Friction of Magnetic Recording Hard Disk by Contact Start/Stop Test

  • Kim, Woo Seok;Hwang, Pyung;Kim, Jang-Kyo
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.12-20
    • /
    • 2000
  • Nano-wear and friction of carbon overcoated laser-textured and mechanically-textured computer hard disk were characterised after contact start/stop (CSS) wear test. Various analytical and mechanical testing techniques were employed to study the changes in topography, roughness, chemical elements, mechanical properties and friction characteristics of the coating arising from the contact start/stop wear test These techniques include: the atomic force microscopy (AFM), the continuous nano-indentation test, the nano-scratch test, the time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and the auger electron spectroscopy (AES). It was shown that the surface roughness of the laser-textured (LT) bump and mechanically textured (MT) Bone was reduced approximately am and 7nm, respectively, after the CSS wear test. The elastic modulus and hardness values increased after the CSS test, indicating straining hardening of the top coating layer, A critical load was also identified fer adhesion failure between the magnetic layer and the Ni-P layer, The TOF-SIMS analysis also revealed some reduction in the intensity of C and $C_2$$F_59$, confirming the wear of lubricant elements on the coating surface.

  • PDF

Control Performance Evaluation of MR Brake Depending on Durability (MR 브레이크의 내구성에 따른 제어성능평가)

  • Kim, Wan Ho;Park, Jhin Ha;Yang, Soon Yong;Shin, Cheol Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.660-666
    • /
    • 2016
  • This paper presents performance comparison results of magneto-rheological (MR) brake in the sense of wear characteristics. To create wear circumstance, the brake is operated in 100 000 cycles by DC motor. To make wear test in same design parameters such as the radius of the housing, ferromagnetic disc and gap size, small sample of stainless are inserted in housing of MR brake. The performances of brake are compared between the initial stage (no wear) and 100 000 revolution cycles operated stage (wear). At each circumstance, torque of the brake is measured and compared by applying step current and sinusoidal control input. The controller used in this work is a simple, but effective PID controller. It is demonstrated that the wear behavior is more obvious as the operating cycle is increased in the torque control process.

EFFECT OF LOAD AND ANODE/CATHODE AREA RATIO ON WEAR OF Zr-ALLOY IN $Na_2SO_4$ SOLUTION

  • Iwabuchi, A.;Hosoya, K;Abe, K.;Shimizu, T.;Kim, S.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.205-206
    • /
    • 2002
  • In this paper we examined the contribution of mechanical and electrochemical factors in corrosive wear for Zr-alloy against $Al_2O_3$ ball in $Na_2SO_4$ solution. Normal load and the area of metallic specimen was varied to change the corrosion behavior. At the commence of sliding, the potential drop took place, which increased with load due to the great exposure of fresh surface. Wear volume was linearly proportional to load. The corrosion factor was about 15%. By increasing the Aa/Ac ratio, corrosion factor to total wear decreases and saturates above Aa/Ac=0.15.

  • PDF