• 제목/요약/키워드: Mechanical wear

검색결과 1,760건 처리시간 0.026초

대형 2행정 디젤기관용 모터구동 실린더 주유기의 성능에 미치는 퀼 어큐뮬레이터의 영향에 관한 연구 (A Study on Effect of Quill Accumulator upon Performance of Motor-driven Cylinder Lubricator in a Large Two-stroke Diesel Engine)

  • 배명환;옥현진;정화
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.115-125
    • /
    • 2007
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke marine diesel engine is of great economic importance. In Korea, a motor-driven cylinder lubricator for a large two-stroke marine diesel engine manufactured by $W{\ddot{a}}rtsil{\ddot{a}}$ Switzerland Co., Ltd. was first developed by authors through the joint research of industry-university in 2002. The characteristic of the developed product is that can control automatically the oil feed rate to a load fluctuation by the motor drive and the offset cam. The performance of the product is not also inferior to the conventional one. For manufacturing the reliable and useful products, however, it is necessary to investigate further characteristics and improve the performance of a cylinder lubricator. In this study, the effect of quill with and without accumulator on maximum discharge pressure, delivery delay duration and oil feed rate relative to motor revolution speed using plunger stroke as a parameter is experimentally investigated by using the developed cylinder lubricator. It is found that the maximum discharge pressure with accumulator is higher than that of no accumulator as plunger stroke and motor revolution speed are elevated, and the delivery delay duration with accumulator is shorter than that of no accumulator as plunger stroke and motor revolution speed are increased. Also, oil feed rate with accumulator is less than that of no accumulator except for a plunger stroke of 2 mm as plunger stroke and motor revolution speed are raised.

Study of Inhibition Characteristics of Slurry Additives in Copper CMP using Force Spectroscopy

  • Lee, Hyo-Sang;Philipossian Ara;Babu Suryadevara V.;Patri Udaya B.;Hong, Young-Ki;Economikos Laertis;Goldstein Michael
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권1호
    • /
    • pp.5-10
    • /
    • 2007
  • Using a reference slurry, ammonium dodecyl sulfate (ADS), an anionic and environmentally friendly surfactant, was investigated as an alternative to BTA for its inhibition and lubrication characteristics. Results demonstrated that the inhibition efficiency of ADS was superior to that of BTA. Coefficient of friction (COF) was the lowest when the slurry contained ADS. This suggested that adsorbed ADS on the surface provided lubricating action thereby reducing the wear between the contacting surfaces. Temperature results were consistent with the COF and removal rate data. ADS showed the lowest temperature rise again confirming the softening effect of the adsorbed surfactant layer and less energy dissipation due to friction. Spectral analysis of shear force showed that increasing the pad-wafer sliding velocity at constant wafer pressure shifted the high frequency spectral peaks to lower frequencies while increasing the variance of the frictional force. Addition of ADS reduced the fluctuating component of the shear force and the extent of the pre-existing stick-slip phenomena caused by the kinematics of the process and collision event between pad asperities with the wafer. By contrast, in the case of BTA, there were no such observed benefits but instead undesirable effects were seen at some polishing conditions. This work underscored the importance of real-time force spectroscopy in elucidating the adsorption, lubrication and inhibition of additives in slurries in CMP.

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권4호
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

세월호 사고 발생에 따른 여객선 승객의 안전의식 변화 (Change of safety consciousness of passengers onboard ship after the Sewol ferry incident)

  • 황광일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1156-1162
    • /
    • 2014
  • 294명이 사망하고 10명이 실종된 세월호 사고와 같은 해상사고의 재발을 방지하기 위하여, 본 연구에서는 세월호 사고 전후 국내 여객선 승객의 안전의식 변화를 비교, 분석하였다. 설문조사는 제주연안여객터미널에서 2014년 2월과 5월에 두차례 수행되었고 설문에 대한 각 유효응답인원은 394명, 401명이었다. 세월호 사고 이후 승무원이 알려주는 경로를 따르겠다는 응답은 24.8% 낮아졌고, 승무원의 유도에 따라 피난을 가겠다는 응답도 18.5% 감소하는 등 전반적으로 승무원에 대한 신뢰가 낮아졌다. 또한 세월호 사고 이후 여객선 일반 승객의 77.6%는 세월호 사고와 같은 재난을 당할 수 있다는 불안감을 느끼지만, 약 60% 응답자는 승선 중 진행된 안전교육을 받지 않았고, 45%는 구명조끼 착용법을 모르며, 약 50%정도는 비상대피로를 확인하지 않으고, 60%는 구명벌, 구명보트의 위치를 파악하지 않는 모순을 보였다. 한편, 86.9%의 응답자가 현재 주로 동영상으로만 진행되는 안전교육 방법의 개선이 필요하다고 응답했다.

AISI M2 파우더를 이용한 SKD61 재질의 레이저 메탈 디포지션 기초 특성 분석 (Effect analysis in Laser Metal Deposition of SKD61 using AISI M2 power)

  • 김원혁;정병훈;오명환;최성원;강대민
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.50-56
    • /
    • 2015
  • In this study, AISI M2 powder was selected primarily through various pieces of literature in order to improve the hardness and wear resistance. Among the laser metal deposition parameters, laser power was studied to improve the deposition efficiency in the laser metal deposition using a diode-pumped disk laser. An SKD61 hot work steel plate and AISI M2 powder were used as a substrate and powder for laser metal deposition, respectively. Experiments for the laser metal deposition were carried out by changing the laser power and track layer. The quality of the track surface and cross-section after applying the single-layer method was better than that obtained from applying the multi-layer method. As the laser power increased, the track thickness was increased, and the surface roughness deviation was decreased. In laser power condition of 1.6kW, the maximum hardness of the deposition track was 790Hv. This value was 40% better than the hardness of the SKD61 after heat treatment.

발열장치를 이용한 보온 기능성 스마트 파운데이션의 개발 및 평가 (Development and Evaluation of Smart Foundation with Heating Devices)

  • 황영미;이정란
    • 한국의류산업학회지
    • /
    • 제15권2호
    • /
    • pp.231-239
    • /
    • 2013
  • This research developed a smart girdle for adult women in their 20's that has an inserted carbon weaving heater to help with relief from coldness and abdominal disease through the thermal insulation effect. A pocket of powernet fabric was attached to the inside of the girdle for the easy insertion and separation of the heating device, while the heating device was fixed to a mesh material by cotton yarn and was wrapped with elastic lining material to prevent the mechanical devices from being exposed. A set of 3 hooks was attached to the center of the back of the heating device in consideration of convenience and mobility. Whereas the switch was inserted into around the right waistband, and the battery into the inner pocket around the waist, to integrate the heating device with the girdle. The satisfaction and usability of the fabricated smart girdle was verified by having research participants wear it to evaluate the appearance change caused by the device, the inconvenience of wearing/unwearing, mobility, and the satisfactory functionality of the device. As a result, the grand mean was evaluated to be high, with appearance (4.19), mobility (4.17), and functionality (4.51) being higher than 4.00; which indicates that the heat generation function of the smart girdle is effective. It may be said that such collection and analysis of data that reflect users' opinions have value and significance in that they can be grafted onto future research on new technology as well as they contribute to taking a step forward in the rapidly increasing research of smart clothing, with the new-type clothing equipped with new function.

과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향 (Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys)

  • 김철현;주대헌;김명호;윤의박;윤우영;김권희
    • 한국주조공학회지
    • /
    • 제23권4호
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.

Bone-like Apatite Formation on Ti-6Al-4V in Solution Containing Mn, Mg, and Si Ions after Plasma Electrolytic Oxidation in the SBF Solution

  • Lim, Sang-Gyu;Choe, Han Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.157-157
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. They can directly connect to bone. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electrochemical oxidation is a novel method to form ceramic coatings on light metals such as titanium and its alloys. This is an excellent reproducibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magnesium (Mg) has a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth and development. Manganese influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Insufficience of Mn in human body is probably contributing cause of osteoporosis. Pre-studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The objective of this work was to study nucleation and growth of bone-like apatite formation on Ti-6Al-4V in solution containing Mn, Mg, and Si ions after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages. And bone-like apatite formation was carried out in SBF solution for 1, 3, 5, and 7 days. The morphologies of PEO-treated Ti-6Al-4V alloy in containing Mn, Mg, and Si ions were examined by FE-SEM, EDS, and XRD.

  • PDF

Bone-like Apatite Morphology on Si-Zn-Mn-hydroxyapatite Coating on Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Park, Min-Gyu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.158-158
    • /
    • 2017
  • Titanium and its alloys have been used in the field dental and orthopedic implants because of their excellent mechanical properties and biocompatibility. Despite these attractive properties, their passive films were somewhat bioinert in nature so that sufficient adhesion of bone cells to implant surface was delayed after surgical treatment. Recently, plasma electrolyte oxidation (PEO) of titanium metal has attracted a great deal of attention is a comparatively convenient and effective technique and good adhesion to substrates and it enhances wear and corrosion resistances and produces thick, hard, and strong oxide coatings. Silicon(Si), Zinc(Zn), and Manganese(Mn) have a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. And, Zn has been shown to be responsible for variations in body weight, bone length and bone biomechanical properties. Also, Mn influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. The objective of this work was research on bone-like apatite morphology on Si-Zn-Mn-hydroxyapatite coating on Ti-6Al-4V alloy by plasma electrolytic oxidation. Anodized alloys were prepared at 280V voltage in the solution containing Si, Zn, and Mn ions. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, and EDS.

  • PDF

Electrochemical Behavior of Plasma Electrolytic Oxidized Films Formed in Solution Containing Mn, Mg and Si Ions

  • Lim, Sang-Gyu;Choe, Han Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.80-80
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electro-chemical oxidation is a novel method to form ceramic coatings on light metals such as tita-nium and its alloys. This is an excellent re-producibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magne-sium (Mg) have a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth, and development. Mn influences regulation of bone remodeling be-cause its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Pre-studies have shown that Mg plays very im-portant roles in essential for normal growth and metabolism of skeletal tissue in verte-brates and can be detected as minor constitu-ents in teeth and bone. In this study, Electrochemical behavior of plasma electrolytic oxidized films formed in solution containing Mn, Mg and Si ions were researched using various experimental in-struments. A series of Si-Mn-Mg coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 5 and 10%. The potentiodynamic polarization and AC impedance tests for corrosion behav-iors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV. Also, AC impedance was performed at frequencies anging from 10MHz to 100kHz for corrosion resistance.

  • PDF