• Title/Summary/Keyword: Mechanical system

Search Result 19,894, Processing Time 0.058 seconds

Dynamics and GA-Based Stable Control for a Class of Underactuated Mechanical Systems

  • Liu, Diantong;Guo, Weiping;Yi, Jianqiang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The control of underactuated mechanical system is very complex for the loss of its control inputs. The model of underactuated mechanical systems in a potential field is built with Lagrangian method and its structural properties are analyzed in detail. A genetic algorithm (GA)based stable control approach is proposed for the class of under actuated mechanical systems. The Lyapunov stability theory and system properties are utilized to guarantee the system stability to its equilibrium. The real-valued GA is used to adjust the controller parameters to improve the system performance. This approach is applied to the underactuated double-pendulum-type overhead crane and the simulation results illustrate the complex system dynamics and the validity of the proposed control algorithm.

A computer-aided drawing check system - part 1

  • Lee, Seoung-Soo;Tsujio, Shozo;Ono, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.798-803
    • /
    • 1988
  • This paper is concerned with a computer-aided supporting system to a systematic check of mechanical drawings. The problems treated in this paper are limited to the checking of the omissions and mis-writings of dimensioning in the mechanical drawings made by a CAD system. A drawing check system has been made up on a personal computer with Basic and Pascal. The feasibility of the proposed drawing check system is confirmed for omissions and mis-writings of dimensioning in mechanical drawings.

  • PDF

A Study on the Development of CAD/CAM System for Deep Drawing Transfer Die in Mechanical Press Process (기계식 프레스에서의 디프 드로잉 트랜스퍼 금형 자동설계 및 가공 시스템에 관한 연구)

  • 박상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1146-1149
    • /
    • 1995
  • The CAD/CAM System for deep drawing transfer die in mechanical press proess has been developed. The developed CAD system can generate the drawing of drawing of transfer die in mechanical press. Using these results from CAD system, it can generate the NC data to machine die's elements on the CAD system. This system can reduce design man-hours and human errors. In order to construct the system, it is used to automate the design process using knowledge base system. The developed system is based on the knowledge base system which is involved a lot of expert's technology in the practice filed. Using AutoLISP language under the AutoCAD system, CTK customer language of SmartCAM is used as the overall CAD/CAM environment. Results of this system will be provide effective aids to the designer and mannufacturer in this field.

  • PDF

유니사이클 로봇의 링크 시스템에 대한 운동학적 해석

  • 김중완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.309-312
    • /
    • 1996
  • In view of physical mechanics, unicycle's dynamical system is a very sensitive system. Mechanical unicycle's structure has mechanical components of wheel, body frame, driving actuator and several mechanical elements. Mechanical unicycle is closed link system. Each component is chained with the others. For design of unicycle robot. we must decide the sizes, masses, positions of mechanical components throughout kinematics and kinetics analysis of unicycle robot. In this paper, we analized driving and closed link mechanism of unicycle robot

  • PDF

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.