• Title/Summary/Keyword: Mechanical shock

Search Result 1,078, Processing Time 0.027 seconds

Evaluation of the Dynamic Characteristics of Rubber Structure under Impact Force (충격하중을 받는 고무구조물의 동특성 평가)

  • Kim, Wan-Doo;Kim, Dong-Jin;Lee, Young-Shin
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.40-48
    • /
    • 2006
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. In the finite element analysis, elastic modulus of rubber using impact force was used as dynamic modulus, which are measured and predicted with dynamic property test and WLF model. The analysis result was coincided with the experimental results.

Design of Creep Function for Forklift Automatic Transmission (지게차 자동변속기 저속주행기능 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.46-55
    • /
    • 2021
  • A forklift is a powered industrial vehicle used to lift and move materials over short distances. Nowadays, almost all forklifts are equipped with an automatic transmission due to its improved operator comfort and increased productivity. Thanks to marked improvement of transmission control unit equipped with highly-advanced microcontrollers, recently developed automatic transmission for forklift have various auxiliary functions such as creep, auto retardation, and automatic shift with excellent shift quality. This paper deals with the creep function which enables one to maneuver a forklift at the designated low speed by slip control of clutches. The design of creep function was based on four modes of creep operation depending on the status of the operator's shift lever and accelerator pedal. Control algorithms and control parameters for each mode were designed to achieve the desired static and dynamic performance. Vehicle test for the designed creep function was carried out with an independently developed embedded controller. Test results confirmed good creep speed control without speed error at a steady state with a mild shift shock during mode changes by stepping or releasing the accelerator.

The Design Method of TR Module Based GaN for Satellite (실용위성 적용을 위한 GaN 기반 TR모듈 설계 기법)

  • Yang, Ho-Jun;Lee, Yu-ri;Cho, Seongmin;Yu, Kyungdeok;Kim, Jong-Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • TR module using in satellite must consider discriminative electrical and mechanical requirements compare to the one using in ground and aircraft system since not only the environment level of vibration and shock during the launch stage but also the level of radiation, vacuum and thermal variation from orbit environment are more severe than atmosphere condition. This paper describes the environmental conditions of launch and the orbit and, suggests design method of TR module applying GaN to satisfy the unique environmental requirements of satellite systems by especially focusing on parts selection, derating design, RF budget design, manufacturing process design, and thermal design of TR module.

Numerical Study on the Erosion Tendency of Centrifugal Slurry Pump Impeller for Thermal Power Plants (화력발전소용 원심 슬러리 펌프 임펠러의 침식경향 해석적 연구)

  • Cheon, Min-Woo;Lee, Chul-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.101-108
    • /
    • 2022
  • Centrifugal pumps are typically used in many slurry industries to transport solid materials. Solid particles in the slurry frequently shock the walls inside the pump, significantly abrading the flow path. Wear damage causes replacement of the pump components, which wastes manpower and time. Therefore, previous studies have been conducted on factors to improve efficiency and life time. This study identifies trends in pumps supplying lime to desulfurized devices from thermal power plants. The shear stress transport(SST) model is used to determine the erosion trend of the centrifugal pump that transfers lime slurry. The purpose of this study is to identify efficiency and erosion trends by selecting three of the various impeller design elements. The three impeller blade design variables mentioned above represent the inlet draft angle and blade angle of leading edge(L.E) and trailing edge(T.E). The maximum value of the erosion density rate tends to be similar to the Input power.

LED Delamination Evaluating Method by Thermal Shock Test (열충격시험을 통한 LED 박리 평가법에 관한 연구)

  • Jang, In-Hyeok;Han, Ji-Hoon;Ko, Min-ji;Lee, Young-Joo;Lim, Hong-Woo
    • Journal of Advanced Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.121-124
    • /
    • 2013
  • This paper proposed a new concept of estimating method for LED(light-emitting diode) delamination with high accuracy. Usually, The LED is composed several materials which are LED chips, gold wire, phosphor, epoxy resin, adhesive, reflector and lead frame. These different materials are usually delaminated in a trouble conditions which are huge temperature difference, hot and humid or mechanical shocked. When the components are delaminated, a luminance will be lost, moisture be absorbed easily and a thermal resistance be increased attendantly. As a conventional method to estimate a delamination of LEDs, a solution immersing method is usually used in a field of LED manufacturing companies or researching institutes. This method has an advantage of simplicity but it is only shown that the existence of delamination or not. In this paper, we have proposed an estimating method for LEDs delamination using the polishing and the electron microscope. New proposed method has shown the result of confirming delamination without destruction and enabled quantitative analysis for LED delamination.

Characterization of 3D Printed Wrist Brace with Various Tilting Angles of Re-entrant Pattern Using Thermoplastic Elastomer

  • Ye-Eun Park;Hyejin Lee;Imjoo Jung;Sunhee Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1074-1087
    • /
    • 2022
  • This study reports an optimization of a 3D printed wrist brace (WB) for various tilting angles (0°, 45°, 90°) of the re-entrant (RE) pattern and thickness (2 mm, 4 mm) using thermoplastic polyurethane (TPU) filaments and thermoplastic elastomer (TPE) filaments. The actual printing time, weight, Poisson's ratio, and tensile property of the manufactured samples were analyzed. The results confirmed that the actual printing time and weight increased with increasing thickness, regardless of the filament type. All tilting angles of the WB showed a negative Poisson's ratio (NPR), the largest of which appeared at 90°. The results of the tensile property analysis showed that a 90° tilting angle also had the largest value of elongation and stress. From these results, we conclude that the most suitable wrist brace is one in which the actual printing time is low, the weight is minimized to a thickness of 2 mm, and the tilting angle of the RE pattern is 90° for good shock absorption. The choice of filaments may be decided upon according to the user's preference, since the TPU is stiff and the TPE is elastic.

Factors Related to the Development of Myocardial Ischemia During Mechanical Ventilation (인공 호흡기 적용에 따른 심근 허혈의 발생에 관한 연구)

  • Kim, Tae-Hyung;Kim, You-Ho;Lim, Chae-Man;Kim, Won;Shim, Tae-Sun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Koh, Youn-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.5
    • /
    • pp.645-653
    • /
    • 1999
  • Introduction : Although myocardial ischemia tends to occur more frequently than can he documented in ventilated patients, it has not been well studied on the factors related to the occurrence of the ischemia. Methods : To investigate the related factors to ischemia development, a prospective study was done in 95 cases with consecutive 73 patients who had received mechanical ventilation(MV) in MICU. In addition to 24 h holter monitoring, echocardiogram, electrolytes, cardiac enzymes, hemodynamic, and gas exchange measurements were done within 24 h after initiation of MV in 69 cases. The measurements were repeated at weaning period in 26 cases. The ischemia was defined by the ST segment changes; up-sloping depression more than 1.5 mm or down-sloping or horizontal depression more than 1.0 mm from isoelectric baseline for 80 ms following J point. Results : Twelve patients(12.6% in 95 cases) developed ischemia in total. The incidence of ischemia development showed an increased tendency in the initial 24 hr after MV (15.9%) and in patients with left-sided heart failure found by echocardiogram (18.2%) compared with that of the weaning period (3.8%) and patients without heart failure (10.9%) (P=0.12, P=0.09, in each). There were no differences in APACHE III score, baseline ECG findings, electrolytes abnormalities, use of inotropics or bronchodilators, presence of sepsis or shock, mode of ventilation, and survival rate according to the development of ischemia. Maximal heart rates and mean arterial pressure also were not different between patients with ($137.2{\pm}30.9/min$, $82.5{\pm}15.9$ mm Hg) and without ischemia ($l29.5{\pm}29.7/min$, $83.8{\pm}17.6$ mm Hg). Conclusion : Although the incidence of myocardial ischemia was 12.6% in total, there were no clinically predictable factors to the development of ischemia during mechanical ventilation.

  • PDF

Evaluation of lung injury score as a prognostic factor of critical care management in multiple trauma patients with chest injury (흉부외상이 동반된 다발성 외상환자에서 폐손상 점수가 중환자실 치료에 미치는 영향)

  • Han, Kook-Nam;Choi, Seok-Ho;Kim, Yeong-Cheol;Lee, Kyoung-Hak;Lee, Soo-Eon;Jeong, Ki-Young;Suh, Gil-Joon
    • Journal of Trauma and Injury
    • /
    • v.24 no.2
    • /
    • pp.105-110
    • /
    • 2011
  • Purpose: Chest injuries in multiple trauma patients are major predisposing factor for increased length of stay in intensive care unit, prolonged mechanical ventilator, and respiratory complications such as pneumonia. The aim of this study is the evaluation of lung injury score as a risk factor for prolonged management in intensive care unit (ICU). Methods: Between June to August in 2011, 46 patients admitted to shock and trauma center in our hospital and 24 patients had associated chest damage without traumatic brain injury. Retrospectively, we calculated injury severity score (ISS), lung injury score, and the number of fractured ribs and performed nonparametric correlation analysis with length of stay in ICU and mechanical ventilator support. Results: Calculated lung injury score(<48 hours) was median 1(0-3) and ISS was median 30(8-38) in study population. They had median 2(0-14) fractured ribs. There were 2 bilateral fractures and 2 flail chest. Ventilator support was needed in 11(45.8%) of them for median 39 hours(6-166). The ISS of ventilator support group was median 34(24-34) and lung injury score was median 1.7(1.3-2.5). Tracheostomy was performed in one patient and it was only complicated case and ICU stay days was median 9(4-16). In correlation analysis, Lung injury score and ISS were significant with the length of stay in ICU but the number of fractured ribs and lung injury score were predicting factors for prolonged mechanical ventilator support. Conclusion: Lung injury score could be a possible prognostic factor for the prediction of increased length of stay in ICU and need for mechanical ventilator support.

Thermal and Mechanical Properties of Epoxy Composites Using Silica Powder (실리카 파우더를 이용한 에폭시 복합소재의 열적/기계적 특성)

  • Lee, Hye Ryeon;Song, JeeHye;Kim, Daeyeon;Lim, Choong-Sun;Seo, BongKuk
    • Journal of Adhesion and Interface
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Epoxy composites with concentrations of 5-70 wt% of silica particles were prepared in order to improve mechanical property and poor thermal stability. The mechanical and thermal properties were investigated and compared to the corresponding properties of neat epoxy composite. Furthermore, the effects of silane compound treatment on silica particles were observed by the experimental results of the tensile strength, glass transition temperature, and thermal stability of epoxy composite. Tensile strength of epoxy composites was measured by universal testing machine (UTM) and after that, the structure and morphology analysis of epoxy nanocomposites were analyzed by field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS). The increased solid content of CA0030 particle improved the tensile strength of epoxy/ modified composites to give 30-50 MPa. The thermal expansion coefficients (CTE) of neat epoxy resin and epoxy/silica composites measured with a thermomechanical analyzer (TMA) showed that the incorporation of silica particles was helpful to reduce the CTE of neat epoxy resin.

A Study on Vibration & Noise Reduction of Fast Back Feeding Device for Manufacturing Process (제조공정용 Fast Back 이송장치 진동·소음 저감에 관한 연구)

  • Han, Doo-Hee;Lee, Seung-Hun;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.642-648
    • /
    • 2019
  • This paper presents a fast back-type transfer device for snack food processing that uses the inertia of transferred material. A conventional conveying system is a drive system that uses a belt conveyor and mechanical crank, which generate noise and vibration and cause environmental pollution. Vibration and noise are reduced in the proposed fast back feeding device by using a counterweight. The crank drive unit was replaced with a linear servomotor, and an equilibrium device was designed to balance the force due to acceleration. This makes it is possible to adjust the forward and backward speed and acceleration through PLC control. A vibration damper device offsets the vibration force of the periodic shock form. The main cause of the vibration was identified through vibration analysis, and reduction measures were established. We verified the effectiveness of the vibration by making a prototype and performing about 10 vibration tests. Because no mechanical transducer is needed, energy loss, noise, and vibration do not occur, and the operating speed is not limited.