• Title/Summary/Keyword: Mechanical seal

Search Result 268, Processing Time 0.027 seconds

Experimental Investigation of Thermal Stress Cracks in Mechanical Face Seals (기계평면시일의 열응력 크랙에 관한 실험적 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.79-84
    • /
    • 1996
  • One of the greatest dangers in mechanical face seals is the formation of heat checking and thermal stress cracks on the sliding surfaces. These thermal distortions due to non-uniform heating lead to increase the leakage of the sealed fluids and wear, and with balance of the seal can cause the seal faces to part. In this study heat checking and thermal stress cracks are investigated experimentally. These thermal distortions are explained using the thermal models of the conatct geometries between the seal ring and the seal seat. To overcome these thermal problems, the thermohydrodynamic seal is presented. The newly developed mechanical seal may substantially reduce the friction torque, frictional heating which causes heat checking and thermal stress cracks, and wear.

Finite Element Analysis for Performance Evaluation of the Seal in a Universal Joint Bearing (유니버설 조인트 베어링용 시일의 성능평가를 위한 유한요소해석)

  • Kim, Tae-Wan;Moon, Suk-Man;Koo, Young-Pil;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.140-146
    • /
    • 2001
  • Seals in a universal joint bearing are important components reinforcing lubrication performance by holding lubricant and preventing infiltration of dust, moisture, etc.. There is a great difference in seal performance according to seal shape and bonding position. Therefore, in this study, as for both the lip type seal and the O-ring type seal, FE analysis is conducted using Mooned-Rivlin Model. The results show that O-ring type seal does not have any effect of misalignment angle compared with lib type seal, which is more profitable.

  • PDF

Development of Mechanical Face Seal in 75-tonf Turbopump for Leakage Reduction (누설 저감을 위한 75톤급 터보펌프 개량형 미케니컬 페이스실 개발)

  • Bae, JoonHwan;Kwak, Hyun-Duck;Lee, ChangHun;Choi, JongSoo
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • In this paper, we present an experimental investigation of the leakage and endurance performances of mechanical face seals in a 75-tonf turbopump for the Korea Space Launch Vehicle II first-stage engine. A mechanical face seal is used between the fuel pump and turbine to prevent mixing of the fuel and turbine gas. However, excessive leakage occurs through the carbon attached to the mechanical face seal bellows. To reduce this leakage, we redesign the mechanical face seal such that the contact area between the fuel and carbon is reduced, height of the carbon nose is reduced, and stiffness of the bellows is increased. Then, we conduct static and dynamic leakage tests and endurance tests to compare the performances of the original and modified mechanical face seals. The investigation of the leakage of the old and new mechanical face seals confirms that the leakage performance is significantly improved, by 80%, in the new design in comparison with the old design. The endurance tests demonstrate that the average wear rate of carbon in the new mechanical face seal is 0.1094 ㎛/s. The service lifetime is predicted to be 4,200 s, which is 28 times greater than the requirement. Finally, we present a new mechanical face seal in a 75-tonf turbopump, and perform a validation test in the real-propellant test facility at the NARO Space Center. Based on the test results, we can confirm that the modified mechanical face seal works well under real operating conditions.

Static Characteristic Analysis of Mechanical Face Seal Used for Boiler Feedwater Pump (보일러 급수 펌프용 미케니컬 페이스 실의 정특성 해석)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.230-239
    • /
    • 2010
  • Mechanical face seal installed in boiler feedwater pump prevents leakage of working fluid using thin fluid film between stator and rotor. If the leakage of working fluid exceeds the allowable volume, serious malfunction of boiler feedwater pump will be happen. The thinner fluid film exists between stator and rotor, the less working fluid leaks out. However, if the thickness of fluid film is not enough, the wear of seal face will be increased. And it causes the decrease in life of mechanical face seal. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the static characteristics of wavy mechanical face seals which have 4 different wavy surface profiles on rotor. As a result, opening force, leakage volume of working fluid and friction torque were obtained. For the same minimum film thickness, the static characteristics of mechanical face seal were affected by the wavy surface profile which can change the thickness of working fluid film and pressure distribution.

Effect of Coning Combinations on Working Performances of Wavy Mechanical Face Seal (코닝 조합이 물결 프로파일이 가공된 미케니컬 페이스 실의 작동 성능에 미치는 영향)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.70-80
    • /
    • 2012
  • Non-contact type mechanical face seals installed in mechanical systems prevent leakage of working fluid using thin working fluid film between stator and rotor. For that purpose, various kinds of surface profiles, grooves and conings have been applied on seal surfaces of stator and rotor to generate hydrodynamic and hydrostatic pressure. The thickness distribution of working fluid film is one of important factors which affect the working performances of mechanical face seal, and it is strongly affected by the surface height profiles of stator and rotor. Therefore, appropriate design of surface height profiles of stator and rotor is necessary to optimize the working performances and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to estimate the working performances of wavy mechanical face seals which have 36 coning combinations. As results, minimum thickness of working fluid film, leakage volume of working fluid and friction torque in static equilibrium condition of mechanical face seal, and stiffness of working fluid film were obtained. The results show that the working performances of mechanical face seal were affected by the coning combinations which can change the thickness distribution of working fluid film and pressure distribution in sealing region of mechanical face seal.

Analysis of a Lip Seal Behavior for Rotary Union (로터리 유니온용 립 시일의 거동 해석)

  • Park, Tae-Jo;Yoo, Jae-Chan
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.272-277
    • /
    • 2007
  • Various type of rotary unions are widely used to provide fluids between rotating parts. To prevent fluid leakage, most of the rotary unions adopt mechanical seals which is highly reliable but too expensive and complicate. In this paper, a simple lip seal system made of PTFE is adopted in designing of a compact rotary union. Using MARC, the behavior characteristics of lip seal are investigated for seal mounting process, and obtained variations of contact pressure distribution and contact width with interferences and fluid pressures. The results showed that contact width are increased with interference and pressure. The maximum contact pressure are also increased up to a certain interference and pressure, however, then decreased. The numerical methods and results can be applied in designing and performance improvement of lip seal adopted rotary union, and further extensive studies are required.

Mechanical Face Seal Performance Test for 75ton Class Turbopump (75톤급 터보펌프 기계평면 실의 작동 성능 시험)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Park, Min-Joo;Kim, Jin-Han
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.187-191
    • /
    • 2009
  • A leakage performance test and an endurance performance test of a 75 ton class turbopump mechanical face seal are performed using water under high speed and high temperature environment. A prototype mechanical face seal is manufactured for the purpose of sealing of fuel between a fuel pump and turbine. By simulating operating condition experimentally, the leakage rate and seal carbon wear rate are obtained to evaluate the performance of the prototype mechanical face seal. The test results show the acceptable leakage performance and reasonable wear tendency as well.

Labyrinth Seal Design Considering Leakage Flow Rate and Rotordynamic Performance (누설유량과 회전체동역학적 성능을 고려한 래버린스 씰 설계)

  • Minju Moon;Jeongin Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.61-71
    • /
    • 2023
  • This study proposes a procedure for designing a labyrinth seal that meets both leakage flow rate and rotordynamic performance criteria (effective damping, amplification factor, separation margin, logarithmic decrement, and vibration amplitude). The seal is modeled using a one control volume (1CV) bulk flow approach to predict the leakage flow rate and rotordynamic coefficients. The rotating shaft is modeled with the finite element (FE) method and is assumed to be supported by two linearized bearings. Geometry, material and operating conditions of the rotating shaft, and the supporting characteristics of the bearings were fixed. A single labyrinth seal is placed at the center of the rotor, and the linearized dynamic coefficients predicted by the seal numerical model are inserted as linear springs and dampers at the seal position. Seal designs that satisfy both leakage and rotordynamic performance are searched by modifying five seal design parameters using the multi-grid method. The five design parameters include pre-swirl ratio, number of teeth, tooth pitch, tooth height and tooth tip width. In total, 12500 seal models are examined and the optimal seal design is selected. Finally, normalization was performed to select the optimal labyrinth seal designs that satisfy the system performance requirements.

Reduction of Leakage through Labyrinth Seal in a Steam Turbine by Modification of the Teeth Shape (증기터빈 래비린스 실의 형상 개선을 통한누설량 저감에 관한 연구)

  • Ahn, Jung-Hyeon;Moon, Sun-Ae;Moon, Seung-Jae;Lee, Jae-Heon;Yoo, Hoseon
    • Plant Journal
    • /
    • v.5 no.2
    • /
    • pp.56-61
    • /
    • 2009
  • In this study, the numerical study has been carried out to analyze the leakage in a steam turbine labyrinth seal. We modified tooth shape of the labyrinth seal and find out the difference of leakage in this study. Original model is straight labyrinth seal and its modified model is slanted labyrinth seal. The numerical analyses are implemented on two models. The numerical results show that each leakage of tooth shape are found to be 0.4781 kg/s and 0.4485 kg/s, respectively. The slanted labyrinth seal confines in a steam better than straight labyrinth seal. Since actual clearance of the stream function in the slant model is smaller than that of the straight model.

  • PDF

A Lubrication Performance Analysis of Deep Straight Groove Mechanical Face Seal (깊은 직선 홈 미케니컬 페이스 시일의 윤활 성능해석)

  • 이안성;김준호
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.311-320
    • /
    • 2003
  • In this study a general Galerkin FE formulation of the incompressible Reynolds equation is derived for lubrication analyses of noncontacting mechanical face seals. Then, the formulation is applied to analyze the flexibly mounted stator­type reactor coolant pump seals of local nuclear power plants, which have deep straight grooves or plane coning on their primary seal ring faces. Their various lubrication performances have been predicted. Results show that the analyzed deep straight groove seal should have a net coning of less than 0.6 to satisfy the leakage limit. And for the same amount of equilibrium opening force the plane coning seal requires to have a 3 times higher dimensionless coning than the deep straight groove seal.