• 제목/요약/키워드: Mechanical property prediction

검색결과 97건 처리시간 0.025초

시트커버용 인테리어 직물의 감성평가와 소비자 요구도 (Consumer's Sensory Evaluation and Needs of Interior Fabrics for Seat Cover)

  • 김정화;이선영;이정순
    • 한국생활과학회지
    • /
    • 제18권3호
    • /
    • pp.749-756
    • /
    • 2009
  • Keeping abreast with the latest consumer's trends, industries are focusing on sensibility aspects of products to meet consumer's needs. The car(?) seat cover fabrics are more closely related to human senses than anything else. This study attempted to investigate which seat cover fabric can give good feeling to consumers and to analyze their characteristics. Twelve kinds of jacquard fabric used for seat cover were selected. The Kawabata Evaluation System was used to measure the mechanical properties of 12 jacquard fabrics, and tactile sensibility(TS), and preference(P) determined by subjective evaluation of 160 participants were also utilized. The stepwise regression analysis was made to select the most significant mechanical properties, and some models for predicting tactile sensibility and preference was developed. The results are briefly summarized as follows: the most important parameter to choose seat cover fabric is a "hygienic property" and the other parameters are 'materials with color fastness', 'compressive property', 'color', 'antibacterial property', 'easy-care property'. The LogSMD, LogB, LC, EM were selected as significant mechanical properties affecting tactile sensibility. Also, the LC, LogB, LogSMD, LogWC, LogMMD were selected as significant mechanical properties affecting preference.

Prediction of Effective Material Properties for Triaxially Braided Textile Composite

  • Geleta, Tsinuel N.;Woo, Kyeongsik;Lee, Bongho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.222-235
    • /
    • 2017
  • In this study, finite element modeling was used to predict the material properties of tri-axially braided textile composite. The model was made based on an experimental test specimen which was also used to compare the final results. The full interlacing of tows was geometrically modelled, from which repeating parts that make up the whole braid called unit cells were identified based on the geometric and mechanical property periodicity. In order to simulate the repeating nature of the unit cell, periodic boundary conditions were applied. For validation of the method, a reference model was analyzed for which a very good agreement was obtained. Material property calculation was done by simulating uniaxial and pure shear tests on the unit cell. The comparison of these results with that of experimental test results showed an excellent agreement. Finally, parametric study on the effect of number of plies, stacking type (symmetric/anti-symmetric) and stacking phase shift was conducted.

압력용기강 용접 열영향부에서의 미세조직 및 기계적 물성 예측절차 개발 및 적용성 평가 (Development and Evaluation of Predictive Model for Microstructures and Mechanical Material Properties in Heat Affected Zone of Pressure Vessel Steel Weld)

  • 김종성;이승건;진태은
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2399-2408
    • /
    • 2002
  • A prediction procedure has been developed to evaluate the microtructures and material properties of heat affected zone (HAZ) in pressure vessel steel weld, based on temperature analysis, thermodynamics calculation and reaction kinetics model. Temperature distributions in HAE are calculated by finite element method. The microstructures in HAZ are predicted by combining the temperature analysis results with the reaction kinetics model for austenite grain growth and austenite decomposition. Substituting the microstructure prediction results into the previous experimental relations, the mechanical material properties such as hardness, yielding strength and tensile strength are calculated. The prediction procedure is modified and verified by the comparison between the present results and the previous study results for the simulated HAZ in reactor pressure vessel (RPV) circurnferential weld. Finally, the microstructures and mechanical material properties are determined by applying the final procedure to real RPV circumferential weld and the local weak zone in HAZ is evaluated based on the application results.

교량의 장기성능 예측을 위한 디지털 트윈모델 정의 (Definition of Digital Twin Models for Prediction of Future Performance of Bridges)

  • 심창수;전치호;강휘랑;당고손;소칸야
    • 한국BIM학회 논문집
    • /
    • 제8권4호
    • /
    • pp.13-22
    • /
    • 2018
  • Future performance prediction of bridges is challenging task for structural engineers. Well-organized information from design, construction and operation stages is essential for the assessment of structures. Digital twin model is a new concept to realize more reliable data platform for management of infrastructures. Damage history including degradation of material, cracking, corrosion, etc. needs to be accumulated in the digital model. The digital model is linked to the analysis model for the assessment of structural performance considering changed mechanical properties of structural components. In this paper, initial definition digital twin model of a PSC-I girder bridge is proposed.

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

열연 강판의 정정공정에 따른 재질변화 예측기술 (Mechanical Property Variations of the Strip in the Skin Pass Process after Hot Rolling)

  • 이중형;김홍준;구진모;이재곤
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.211-214
    • /
    • 2008
  • The Mechanical properties of steel in hot strip mill were associated with the various rolling conditions such as alloy composition, plastic deformation, cooling history and so on. After coiling process of strip which is the end of hot rolling process, the coil can be the final product or can be applied by another process, that is, cold rolling or skin pass rolling with the additional changes of mechanical properties. Skin pass rolling process with the small reduction affects the mechanical properties of the strip. Because many kinds of hot strips are delivered to the customers after the skin pass process, it is important for us to know the skin pass effects for the mechanical properties of the hot rolling strip. In this study, the variations of mechanical properties of the strip after the skin pass rolling will be discussed. Then, the mathematical model will be proposed for the prediction of mechanical properties of the final products with the comparison between measured and calculated values.

  • PDF

Effect of Microporosity on Tensile Properties of As-Cast AZ91D Magnesium Alloy

  • 이충도
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.283-283
    • /
    • 1999
  • In the present study, the effect of microporosity on the tensile properties of as-cast AZ91D magnesium alloy was investigated through experimental observation and numerical prediction. The test specimens were fabricated by die-casting and gravity-casting. For gravity-casting, the inoculation and use of various metallic moulds were applied to obtain a wide range of microporosity. The deficiency of the interdendritic feeding of the liquid phase acted as d dominant mechanism on the formation of the micropores in the Mg-Al-alloys, rather than the evolution of hydrogen gas. Although tensile strength and elongation has a nonlinear and very intensive dependence upon microporosity, the yield strength appeared to have a linear relationship with microporosity. However, it was possible to quantitatively estimate the linear contribution of microporosity on the individual tensile property far a range of microporosity, which was below about B %. The numerical prediction suggests that the effect of microporosity on fractured strength and elongation decreased as the strain hardening exponent increased. Furthermore. the shape and distribution of micropores may play a more dominant role than local plastic deformation on the tensile behavior of AZ9lD alloy.

Clustering-based identification for the prediction of splitting tensile strength of concrete

  • Tutmez, Bulent
    • Computers and Concrete
    • /
    • 제6권2호
    • /
    • pp.155-165
    • /
    • 2009
  • Splitting tensile strength (STS) of high-performance concrete (HPC) is one of the important mechanical properties for structural design. This property is related to compressive strength (CS), water/binder (W/B) ratio and concrete age. This paper presents a clustering-based fuzzy model for the prediction of STS based on the CS and (W/B) at a fixed age (28 days). The data driven fuzzy model consists of three main steps: fuzzy clustering, inference system, and prediction. The system can be analyzed directly by the model from measured data. The performance evaluations showed that the fuzzy model is more accurate than the other prediction models concerned.

변형률속도효과를 고려한 일반냉연강판 점용접부의 피로수명평가 (Fatigue Life Evaluation of Spot Weldments of SPC Sheet Including Strain Rate Effect)

  • 송준혁;나석찬;유효선;강희용;양성모
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.48-53
    • /
    • 2006
  • A methodology is described for predicting the fatigue life of the resistance spot weldment including strain rate effect. Because it is difficult to perform a physical failure test with high strain rate, an analytical method is necessary to get the mechanical properties of various strain rate, To this end, quasi-static tensile-shear tests at several strain rate were performed on spot weldments of SPC. These test provided the empirical data with the strain rate. With these results, we formulated the function of fatigue life prediction using the lethargy coefficient which is the global material property from tensile test. And, we predicted the fatigue life of spot weldment at dynamic strain rate. To confirm this method for fatigue life prediction, analytical results were compared with the experimental fatigue data.