• Title/Summary/Keyword: Mechanical phenomena

Search Result 1,364, Processing Time 0.028 seconds

Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

  • Bae, Hwang;Kim, Dong Eok;Ryu, Sung-Uk;Yi, Sung-Jae;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.968-978
    • /
    • 2017
  • Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal-hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

A Proposal for Diesel Spray Model Using a TAB Breakup Model and Discrete Vortex Method

  • Yeom, Jeong-Kuk;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Jiro Senda;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.532-548
    • /
    • 2002
  • A hybrid model consisting of a modified TAB (Taylor Analogy Breakup) model and DVM (Discrete Vortex Method) is proposed for numerical analysis of the evaporating spray phenomena in diesel engines. The simulation process of the hybrid model is divided into three steps. First, the droplet breakup of injected fuel is analyzed by using the modified TAB model. Second, spray evaporation is calculated based on the theory of Siebers'liquid length. The liquid length analysis of injected fuel is used to integrate the modified TAB model and DVM. Lastly, both ambient gas flow and inner vortex flow of injected fuel are analyzed by using DVM. An experiment with an evaporative free spray at the early stage of its injection was conducted under in-cylinder like conditions to examine an accuracy of the present hybrid model. The calculated results of the gas jet flow by DVM agree well with the experimental results. The calculated and experimental results all confirm that the ambient gas flow dominates the downstream diesel spray flow.

Experimental Study of Heating Surface Angle Effects on Single Bubble Growth

  • Kim, Jeong-Bae;Kim, Hyung-Dae;Lee, Jang-Ho;Kwon, Young-Chul;Kim, Jeong-Hoon;Kim, Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1980-1992
    • /
    • 2006
  • Nucleate pool boiling experiments were performed using pure R11 for various surface angles under constant heat flux conditions during saturated pool boiling. A 1-mm-diameter circular heater with an artificial cavity in the center that was fabricated using a MEMS technique and a high-speed controller were used to maintain the constant heat flux. Bubble growth images were taken at 5000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of the surface angle on the bubble growth behavior were analyzed for the initial and thermal growth regions using dimensional scales. The parameters that affected the bubble growth behavior were the bubble radius, bubble growth rate, sliding velocity, bubble shape, and advancing and receding contact angles. These phenomena require further analysis for various surface angles and the obtained constant heat flux data provide a good foundation for such future work.

Simulation of Combustion Phenomena at Multiple Injection in HSDI Diesel Engine Using Modified Two Dimensional Flamelet Combustion Model (개량된 2 차원 화염편 연소 모델을 이용한 고속 직분식 엔진에서의 다단 분사시 연소 현상 해석)

  • Lim, Jae-Man;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3300-3305
    • /
    • 2007
  • Ignition delay of second injection of HSDI diesel engine was usually much shorter than that of first injection. It is due to the interaction between radicals generated during the combustion process, and mixed gas of second injection. In this paper, To analyze combustion phenomena of multiple injection mode in HSDI diesel engine effectively, two-dimensional flamelet combustion model was modified. To reduce calculation time, two-dimensional flamelet equations were only applied near stoichiometric region. If this region was ignited, species and temperature of other region were changed to the steady-state solutions of one dimensional flamelet equations. By this method calculation time for solving flamelet equations was reduced to 20 percents, thought the results were almost same. Modified flamelet combustion model was coupled to commercial CFD code interactively using user subroutine.

  • PDF

Quantitative Flow Field Visualization of a Flow inside an Opaque Tube Using Angiographic PIV Method (X선관을 이용한 불투명한 물체 내부 유동의 정량적 가시화 연구)

  • Kim, Guk-Bae;Lim, Nam-Yun;Ryu, Jae-Chun;Yim, Dae-Hyun;Lee, Hyung-Koo;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2935-2940
    • /
    • 2007
  • To diagnose circulatory diseases in the viewpoint of hemodynamics, we need to get quantitative hemodynamic information of blood flows related with the vascular diseases with high spatial resolution of tens micrometer and high temporal resolution in the order of millisecond. For investigating in-vivo hemodynamic phenomena, a new diagnosing technique combining medical radiography and PIV method was newly proposed and developed. This angiographic PIV technique consists of a medical X-ray tube, an X-ray CCD camera, a shutter module for double pulses of X-ray, and a synchronizer. The feasibility of the angiographic PIV technique was tested and quantitative flow velocity field distribution of a flow inside an opaque conduit was acquired by the developed system. It can be used for measuring flow phenomena of nontransparent fluids inside opaque conduits.

  • PDF

Quantitative Measurement of Nano-scale Force using Atomic Force Microscopy (AFM을 이용한 나노스케일 힘의 정량적 측정)

  • Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.62-69
    • /
    • 2012
  • Atomic force microscopy (AFM) has been widely utilized as a versatile tool not only for imaging surfaces but also for understanding nano-scale interfacial phenomena. By measuring the responses of the photo detector due to bending and torsion of the cantilever, which are caused by the interactions between the probe and the sample surface, various interfacial phenomena and properties can be explored. One of the challenges faced by AFM researchers originates in the physics of measuring the small forces that act between the probe of a force sensing cantilever and the sample. To understand the interactions between the probe and the sample quantitatively, the force calibration is essential. In this work, the procedures used to calibrate AFM instrumentation for nano-scale force measurement in normal and lateral directions are reviewed.

3-D Flow Simulation of Process Piping System (프로세스 배관계의 3차원 유동해석)

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.469-473
    • /
    • 2001
  • It is very important that piping system shall meet the optimum design requirement as predicted in designing system. If the piping system proved not to meet the requirement in commission it shall be redesigned and corrected till the required capacity is satisfied. which costs much expense. The objective of this study is to understand steady 3-dimensional flow phenomena in a process piping system numerically. 3-dimensional numerical simulations with standard $k-{\epsilon}$ model were carried out by using ALGOR code for three cases of Reynolds number. 2500, 3500 and 4500, based on inlet pipe diameter and three cases of inflow air temperature, $20^{\circ}C,\;50^{\circ}C$ and $100^{\circ}C$.

  • PDF

An Experimental Investigation on the Pressure Behavior Accompanying the Explosion of Tin in Water (주석-물 시스템의 증기폭발시 발생하는 압력거동에 대한 실험적 연구)

  • Shin, Y.S.;Song, J.H.;Kim, J.H.;Park, I.K.;Hong, S.W.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.51-56
    • /
    • 2001
  • Vapor explosion is one of the most important problems encountered in severe accident management of nuclear power plants. In spite of many efforts, a lot of questions still remain for the fundamental understanding of vapor explosion phenomena. Therefore, KAERI launched a real material experiment called TROI using 20 kg of UO2 and ZrO2 to investigate the vapor explosion phenomena. In addition, a small-scale experiment with molten-tin/water system was performed to quantify the characteristics of vapor explosion and to understand the phenomenology of vapor explosion. A number of instruments were used to measure the physical change occurring during the vapor explosion. In this experiment, the vapor explosion generated by molten fuel water interaction is visualized using high speed camera and the pressure behavior accompanying the explosion is investigated.

  • PDF

Study on the erosion-corrosion damages of pump impeller (워터펌트 내에 있는 임펠러의 침식.부식에 관한 연구)

  • Kim, Jae-Wook;Lim, Hee-Chang;Lim, Uh-Joh
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.102-107
    • /
    • 2007
  • The steel impeller placed in a water pump has been studied with the aim to understand corrosion phenomena on the surface responsible for reducing the pumping efficiency of water inside cooling system. This preliminary experiment includes a period (around 1 month) observation with a powered microscope and weight measurements. The experiments are carried out at different conditions of water and mixtures of water and coolants, based on the water contents of 25%, 50%, 75%, and 100% water (pure tap water). From the visual results of microscopy, most of the steel surface is fitted and clear rusty or corrosion phenomena are noticeable as time goes. In addition, the weight loss of the sample specimen submerged in the water is linearly increased, whereas those in the mixtures of water initially gain weight and become almost constant.

  • PDF

Dynamic Behavior Analysis of a Bridge Considering Nonlinearity of R/C Piers under Bi-Directional Seismic Excitations (R/C 교각의 비선형성을 고려한 교량시스템의 2방향 지진거동분석)

  • 김상효;마호성;이상우;강정운
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.353-360
    • /
    • 2001
  • An analysis procedure of 2-dimensional bridge dynamics has been developed by using force-deformation model, which simulates the pier motion under biaxial bending due to the bi-directional input seismic excitations. A three-dimensional mechanical model is utilized, which can consider the other major phenomena such as pounding, rotation of the superstructure, abutment stiffness degradation, and motions of the foundation motions. The bi-directional dynamic behaviors of the bridge are then examined by investigating the relative displacements of each oscillator to the ground. It is found that the nonlinearity of the pier due to biaxial bending affects the pier motions, but the global bridge behaviors are greatly governed by the pounding phenomena and stiffness degradation of the abutment-backfill system. Especially, the relative displacement of the abutment system (A2) with movable supports to the ground is increased about 30% due to the abutment stiffness degradation.

  • PDF