• 제목/요약/키워드: Mechanical parts

검색결과 3,122건 처리시간 0.035초

단섬유 보강 이방성 사출성형품의 휨 해석 (Warpage Analysis of Fiber Reinforced Injection Molded Parts)

  • 정성택;김진곤;구본흥
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1968-1799
    • /
    • 2000
  • A warpage analysis program has been developed for fiber-reinforced injection molded parts. The warpage is predicted from the residual stress and anisotropic thermo-mechanical properties coupled with fiber orientation in the integrated injection molding simulation. A simple elastic model is used for the calculation of thermally and pressure-induced residual stresses which are employed as the initial conditions in the structural analysis. To improve the reliability of warpage analysis, a new triangular flat shell element superimposing well-known efficient plate bending and membrane element is presented. The numerical examples address the necessity to use anisotropic models for fiber-reinforced materials and show that predicted warpage is in good agreement with experimentally measured one.

UV-LED를 이용한 광조형 장치 개발 (Development of Stereolithography Apparatus by using UV-LED)

  • 윤해룡;고태조;김호찬
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.15-20
    • /
    • 2014
  • The stereolithography(SL) process is a type of fabrication technology which relies on photopolymerization. It has a relatively simple fabrication process and a resolution of several tens of ${\mu}m$. Recently, SL technology has been applied to various areas, such as bioengineering and MEMS devices, due to the development of advanced materials. This technologycan be divided intothe scanning(SSL) and projection (PSL) types. In this paper, in stereolithography, parts are fabricated by curing photopolymeric resins with light. The application of stereolithography can now include fabricated parts. This process, called stereolithography, can fabricate parts by taking into account theirdegrees of geometry complexity. In particular, UV-LED stereolithography can perform quite rapid fabrication in which specific cross-sections are cured upon exposure to light.

FPGA 구현을 통한 자이로의 혼합모드 연구 (A Study on the Mixed Mode of Gyros by FPGA Implementation)

  • 노영환;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제8권1호
    • /
    • pp.54-59
    • /
    • 2002
  • In the three-axis control of satellites by using on-board actuators, gyros are usually used to measure the attitude angles and angular rates. The gyros are operated by electronic parts and mechanical actuators. The digital components of the electronic parts consist of largely FPGA (Field Programmable Gate Array) as one of the methods for VLSI(Very Large Scale Integrated) circuit design, while the mechanical parts provide output signal directly by mechanical actuation of a spinning rotor. In this research, a mixed mode of gyro is implemented in FGA. In addition to the hardware implementation, the simulation study was conducted by using the SABER for the mixed mode simulator. Results for the practical implementation of the satellite ACS (Attitude Control System) interfaced with the data processing are also presented to validate the FPGA implementation.

에너지절감형 대형기계류부품용 수명시험장치의 개발 (Development of energy saving type life testing device for large machinery parts)

  • 이용범;신석신;박종호
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권1호
    • /
    • pp.55-63
    • /
    • 2013
  • For a reliability assessment of large machinery parts, reliable data should be obtained from testing many samples for a long time. However, in case of testing these samples, testing cost is excessive; in case of life test for long time, power consumption is high; and in case of accelerated test by over load, very high cost is required to build the life testing device. Especially it is very frequent that the expensive device's life has ended during a accelerated test by over load. In this study, the design mechanism of the life testing device which excels in energy saving during the reliability test of large machinery parts has been introduced.

후가공을 통한 반투명 RP 재료의 개발: FDM의 예 (Development of Translucent RP Material by Post-processing: Case Study of FDM)

  • 정우벽;이선영;안성훈
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1524-1530
    • /
    • 2003
  • Translucent plastics are commonly used in packaging of mechanical and/or electrical components. Although Rapid Prototyping(RP) provides prototypes of various materials, translucent RP parts are not readily available from most RP processes. ABSi is one of the ABS materials available for Stratasys' FDM process, and the material had potential to be translucent. In this paper, two post-processing techniques were applied in order to increase optical transmissivity of the parts made of FDM's ABSi. First, elevated temperature condition was applied resulting in increased transmissivity while dimensional shrinkage was observed. Second, resin infiltration and surface sanding provided up tp 16 % transmissivity without shrinkage. These post-processes can be selectively applied to increase transmissivity of ABSi parts. Thus, translucent FDM part can be fabricated from regular FDM process followed by the post-processes developed in this study.

조립 공정을 위한 로봇-사람 간 작업 공유 시스템 (Robot-Human Task Sharing System for Assembly Process)

  • 나민우;홍태화;윤준완;송재복
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.419-426
    • /
    • 2023
  • Assembly tasks are difficult to fully automate due to uncertain errors occurring in unstructured environments. When assembling parts such as electrical connectors, advances in grasping and assembling technology have made it possible for the robot to assemble the connectors without the aid of humans. However, some parts with tight assembly tolerances should be assembled by humans. Therefore, task sharing with human-robot interaction is emerging as an alternative. The goal of this concept is to achieve shared autonomy, which reduces the efforts of humans when carrying out repetitive tasks. In this study, a task-sharing robotic system for assembly process has been proposed to achieve shared autonomy. This system consists of two parts, one for robotic grasping and assembly, and the other for monitoring the process for robot-human task sharing. Experimental results show that robots and humans share tasks efficiently while performing assembly tasks successfully.

6축 머니퓰레이터를 이용한 임피던스 제어 기반의 원형 펙 조립 (Impedance-Control Based Peg-in-Hole Assembly with a 6 DOF Manipulator)

  • 김병상;김영렬;송재복;손승우
    • 대한기계학회논문집A
    • /
    • 제35권4호
    • /
    • pp.347-352
    • /
    • 2011
  • 일반 산업용 로봇의 위치정밀도는 $100{\mu}m$ 정도임에 반해, 정밀부품의 조립공차는 수십 ${\mu}m$ 이내이다. 또한, 조립공차가 작을 경우 미소한 위치/각도 오차에 의해 재밍 또는 웨징이 쉽게 발생하며, 위치제어 기반의 로봇인 경우 부품 조립 시 접촉력을 적절히 조절하지 못하여 조립물이 파손될 가능성이 크다 이와 같은 문제를 해결하기 위하여 접촉력에 능동적으로 반응할 수 있는 힘제어 기반의 로봇조립에 대한 연구가 진행되고 있다. 본 연구에서는 기존의 산업용 로봇에 적용하기 용이하도록 위치제어 기반의 머니퓰레이터에 힘제어를 적용할 수 있는 시스템을 구현하였다. 머니퓰레이터에 어드미턴스 필터를 이용한 임피던스 제어를 적용하여 안정적인 접촉운동을 구현하였다. 또한, 임피던스 제어와 blind 검색을 적용하여 정밀부품을 조립할 수 있음을 검증하였다.

오토클레이브 진공포장법의 공정 조건에 따른 복합재의 미세기공률 분석 (Analysis of Composite Microporosity according to Autoclave Vacuum Bag Processing Conditions)

  • 윤현성;안우진;김만성;홍성진;송민환;최진호
    • Composites Research
    • /
    • 제32권5호
    • /
    • pp.199-205
    • /
    • 2019
  • 복합재는 원하는 방향으로 섬유를 배열하여 일체형으로 제조할 수 있는 장점이 있다. 그러나, 복합재는 제작과정에서 층(ply)과 층 사이에 있는 미세 공기, 소재 내부의 수분 또는 경화 중의 부적절한 온도와 압력 등으로 인하여 미세기공이 형성될 수 있으며, 이는 복합재 부품의 기계적 강도저하의 주요 원인으로 평가되고 있다. 본 논문에서는 오토클레이브 진공백 성형법을 이용하여 복합재 두께 별로 공정 조건(경화압력, 압밀시간, 압밀압력, 진공압력)을 변화시켜가며 복합재 패널을 제작하여 미세기공률을 분석하였다. 미세기공률은 이미지 분석법, 용해법, 연소법을 이용하여 평가하였으며, 초음파 감쇠계수와의 연관성을 분석하였다. 실험결과, 미세기공률 분석의 정확도는 용해법이 가장 우수한 것으로 나타났으며, 경화압력이 낮아질수록 미세기공률이 증가하고 높은 초음파 감쇠계수 값을 가짐을 확인하였다. 또한, 동일한 경화압력이라도 적층두께가 증가할수록 초음파 감쇠계수가 증가하고 기공률이 증가됨을 확인하였다.

하드 디스크 드라이브 비 동작 충격 시에 내부 파트들의 동 특성에 대한 연구 (A study on dynamic behavior of inner parts with non-operational shock in hard disk drive)

  • 최용호;최종학;임건엽;서준호;박노철
    • 정보저장시스템학회논문집
    • /
    • 제9권2호
    • /
    • pp.32-35
    • /
    • 2013
  • Nowadays, function related to anti-vibration and anti-shock of storage devices is required because of portability. Therefore, many hard disk drive (HDD) studies about external shock and vibration have been performed. Especially, many studies are performed with non-operational shock. Most studies have used the fixed condition between spindle system and base when they wanted to analyze dynamic behavior of inner parts in simulation. But spindle system has actually stiffness and damping coefficient. Maybe difference of value would be happened between fixed condition and spring condition. So, we measured FRF of spindle system to know stiffness and damping coefficient in HDD. And we studied on dynamic behavior of inner parts by using calculated stiffness and damping coefficient. As a result, we confirmed the difference as boundary condition of spindle system.