• Title/Summary/Keyword: Mechanical modeling

Search Result 3,125, Processing Time 0.028 seconds

Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing (온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구)

  • Lee, Y.S.;Lee, K.S.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.

A speed controller design for low speed marine diesel engine by the $\mu$-synthesis ($\mu$-설계법에 의한 저속 박용디젤기관의 속도제어기 설계)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.60-70
    • /
    • 1995
  • In the field of marine transportation the energy saving is one of the most important factors for profit. In order to reduce the fuel oil consumption the ship's propulsion efficiency must be increased as much as possible. The propulsion efficiency depends upon a combination of an engine and a propeller. The propeller has better efficiency as lower rotational speed. This situation led the engine manufacturers to design the engine that has lower speed, longer stroke and a small number of cylinders. Consequently the variation of rotational torque became larger than before because of the longer delay-time in the fuel oil injection process and an increased output per cylinder. As this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variation of the delay-time and the parameter pertubation. In this paper we consider the delay-time and the perturbation of engine parameters as the modeling uncetainties. Next we design the controller which has zero offset in steady state engine speed, based on the two-degree-of-freedom control theory and $\mu$-synthesis. Thd validity of the controller is investigated through the response simulation. We use a personal computer and an analog computer as the digital controller and the engine (plant) part respectively. And, we certify that the designed controller maintains its performance even though the engine parameters may vary.

  • PDF

Development of Feature-based Encapsulation Process using Filler Material (충진재를 이용한 특징형상 가공용 RFPE 공정 개발)

  • Choe, Du-Seon;Lee, Su-Hong;Sin, Bo-Seong;Yun, Gyeong-Gu;Hwang, Gyeong-Hyeon;Lee, Ho-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.98-103
    • /
    • 2001
  • Machining is the commonly used process in the manufacturing of prototypes. This process offers several advantages, such as rigidity of the machine, precision of the machine, precision of the operation and specially a quick delivery. The weight and immobility of the machine support and immobilize the part during the operation. However, despite these advantages it shows, machining still presents several limitations. The immobilization, location and support of the part are referred to as fixturing or workholding and present the biggest challenge for time efficient machining. So it is important to select and design the appropriate fixturing assembly. This assembly depends on the complexity of the part and the tool paths and may require the construction of dedicated fixtures. With traditional techniques, the range of fixturable shapes is limited and the identification of suitable fixtures in a given setup involves complex reasoning. To solve this limitation and to apply the automation, this paper presents the Reference Free Part Encapsulation(RFPE) and implementation of the encapsulation system. The feature-based modeling system and the encapsulation system are implemented. The small part of which it is difficult to find out the appropriate fixturing assembly is made by this system.

  • PDF

Study of Optimal Process Conditions of 3D Porous Polymer Printing for Personal Safety Products (개인안전 제품을 위한 3 차원 다공성 폴리머 프린팅의 최적화 공정조건에 대한 연구)

  • Yoo, Chan-Ju;Kim, Hyesu;Park, Jun-Han;Yun, Dan-Hee;Shin, Jong-Kuk;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2016
  • In this paper, a fundamental experiment regarding the formation of porous 3D structures for personal safety products using 3D PPP (Porous Polymer Printing) was introduced for the first time. The filament was manufactured by mixing PP (Polypropylene) and CBA (Chemical Blowing Agent) with polymer extruder, and the diameter of the filament was approximately 1.75mm. The proposed 3D PPP method, combined with the conventional FDM (Fused Deposition Modeling) procedure, was influenced by process parameters, such as the nozzle temperature, printing speed and CBA density. In order to verify the best processing conditions, the depositing parameters were experimentally investigated for the porous polymer structure. These results provide parameters under which to form a multiple of 3D porous polymer structures, as well as various other 3D structures, and help to improve the mechanical shock absorption for personal safety products.

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.

Effect of axial loading conditions and confinement type on concrete-steel composite behavior

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.95-109
    • /
    • 2020
  • This paper aims to analytically study the effect of loading conditions and confinement type on the mechanical properties of the concrete-steel composite columns under axial compressive loading. The axial loading is applied to the composite columns in the two ways; only on the concrete core, and on the concrete core and steel tube simultaneously, which are called steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns, respectively. In addition, the confinement is investigated in the three types of passive, short-term active and long-term active confinement. Nonlinear finite element 3D models for analyzing these columns are developed using the ABAQUS program, and then these models are verified with respect to the recent experimental results reported by the authors on the STCC and CFST columns experiencing active and passive confinements. Axial and lateral stress-strain curves as well as the failure mode for qualitative verification, and compressive strength for quantitative verification are considered. It is found that there is a good consistency between the finite element analysis results and the experimental ones. In addition, a parametric study is performed to evaluate the effect of axial loading type, prestressing ratio, concrete compressive strength and steel tube diameter-to-wall thickness ratio on the compressive behavior of the composite columns. Finally, the compressive strength results of CFST specimens obtained via the finite element analysis are compared with the values specified by the international codes and standards including EC4, CSA, ACI-318, and AISC, with the results showing that ACI-318 and AISC underestimate the compressive strength of the composite columns, while EC4 and CSA codes present overestimated values.

An Evaluation on Thermal-structural Behavior of Nozzle Assembly during Burning Time (연소시간 중 노즐조립체의 열-구조적 거동분석에 관한 연구)

  • Ro, Younghee;Seo, Sangkyu;Jeong, Seongmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.36-43
    • /
    • 2018
  • A great deal of difficulty is encountered in the thermo-mechanical analyses of nozzle assemblies for solid propellant rocket motors. The main issue in this paper is the modeling of the boundary conditions and the connections between the various components-gaps, relative movements of the components, contacts, friction, etc. This paper evaluates the complex phenomena of nozzle assemblies during burning time with co-simulations that include fluid, thermal surface reaction/ablation, and structural analysis. The validity of this approach is verified via comparison of analysis results with measured strains.

Coupled solid and fluid mechanics simulation for estimating optimum injection pressure during reservoir CO2-EOR

  • Elyasi, Ayub;Goshtasbi, Kamran;Hashemolhosseini, Hamid;Barati, Sharif
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.37-57
    • /
    • 2016
  • Reservoir geomechanics can play an important role in hydrocarbon recovery mechanism. In $CO_2$-EOR process, reservoir geomechanics analysis is concerned with the simultaneous study of fluid flow and the mechanical response of the reservoir under $CO_2$ injection. Accurate prediction of geomechanical effects during $CO_2$ injection will assist in modeling the Carbon dioxide recovery process and making a better design of process and production equipment. This paper deals with the implementation of a program (FORTRAN 90 interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators, using a partial coupling algorithm. A geomechanics reservoir partially coupled approach is presented that allows to iteratively take the impact of geomechanics into account in the fluid flow calculations and therefore performs a better prediction of the process. The proposed approach is illustrated on a realistic field case. The reservoir geomechanics coupled models show that in the case of lower maximum bottom hole injection pressure, the cumulative oil production is more than other scenarios. Moreover at the high injection pressures, the production rates will not change with the injection bottom hole pressure variations. Also the FEM analysis of the reservoir showed that at $CO_2$ injection pressure of 11000 Psi the plastic strain has been occurred in the some parts of the reservoir and the related stress path show a critical behavior.

Real-time Parallel Processing Simulator for Modeling Portable Missile System and Performance Analysis (휴대용 유도탄 체계의 모델링과 성능분석을 위한 실시간 병렬처리 시뮬레이터)

  • Kim Byeong-Moon;Jung Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.35-45
    • /
    • 2006
  • RIn this paper. we describe real-time parallel processing simulator developed for the use of performance analysis of rolling missiles. The real-time parallel processing simulator developed here consists of seeker emulator generating infrared image signal on aircraft, real-time computer, host computer, system unit, and actual equipments such as auto-pilot processor and seeker processor. Software is developed according to the design requirements of mathematic model, 6 degree-of-freedom module, aerodynamic module which are resided in real-time computer. and graphic user interface program resided in host computer. The real-time computer consists of six TI C-40 processors connected in parallel. The seeker emulator is designed by using analog circuits coupled with mechanical equipments. The system unit provides interface function to match impedance between the components and processes very small electrical signals. Also real launch unit of missiles is interfaced to simulator through system unit. In order to use the real-time parallel processing simulator developed here as a performance analysis equipment for rolling missiles, we perform verification test through experimental results in the field.

  • PDF

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.