• 제목/요약/키워드: Mechanical mixing

검색결과 1,560건 처리시간 0.027초

반응혼합층의 층류확산화염 (Laminar Diffusion Flame in the Reacting Mixing Layer)

  • 신동신
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.605-615
    • /
    • 1996
  • Laminar flows in which mixing and chemical reactions take place between parallel streams of reactive species are studied numerically. The governing equations for laminar flows are from two-dimensional compressible boundary-layer equations. The chemistry is a finite rate single step irreversible reaction with Arrhenius kinetics. Ignition, premixed flame, and diffusion flame regimes are found to exist in the laminar reacting mixing layer at high activation energy. At high Mach numbers, ignition occurs earlier due to the higher temperatures in the unburnt gas. In diffusion regimes, property variations affect the laminar profiles considerably and need to be included when there are large temperature differences. The maximum temperature of a laminar reacting mixing layer is almost linear with the adiabatic flame temperature at low heat release, but only weakly at high heat release.

미소 채널의 형상변화에 의한 혼합효율에 관한 수치 해석적 연구 (Numerical Analysis on Mixing Efficiency in a Micro-channel with Varied Geometry)

  • 윤준용;한규석;변성준
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.275-281
    • /
    • 2005
  • 본 연구에서는 격자 볼츠만 방법 중 Scalar Passive 코드를 사용하여 미소채널 내에서의 수동형 믹서의 혼합에 대하여 계산을 수행하였다. 미소채널 내에서의 수동형 믹서의 혼합에 대하여 유선과 압력분포를 통해 혼합과 압력 강하를 물리적으로 규명하였으며, 혼합에 영향을 주는 인자에 대해서 알아보았다. 수동형 믹서의 경우 고정물의 간격보다는 고정물의 개수와 고정물의 크기가 혼합효율과 압력강하에 큰 영향을 주었다.

충돌형 Quadlet 인젝터의 연소성능 예측에 관한 실험적 연구 (An experimental study for the prediction of combustion performance of the Unlike Impinging Quadlet Injector)

  • 김종욱;박희호;한재섭;김선진;김유
    • 한국추진공학회지
    • /
    • 제3권4호
    • /
    • pp.44-50
    • /
    • 1999
  • Unlike impinging Quadlet injector(OOOF type)에 대한 혼합효율, 혼합특성속도, 혼합특성속도효율을 연소성능을 예측하기 위해 비연소 실험을 통하여 구하였다. 모의 추진제는 물($H_2$O)와 케로신($CH_{1.97}$)을 사용하였고, 혼합상관인자로써 산화제, 연료 분류의 운동량비를 사용하였다. 인젝터 분무특성을 파악하기 위해 오리피스(orifice) 각 hole에 대한 유량계수, 분무형상, 질량분포 획득이 수행되어졌다. 연구 결과, 침투깊이는 혼합효율, 혼합특성속도, 혼합특성속도 효율에 영향을 미침을 알 수 있었다. 또한, 혼합효율 및 혼합특성속도 효율은 MR=1.67(TMR=2.5)에서 87%로 최대값을 가지며 산화제 과잉상태보다 연료 과잉상태에서 더 큰 감소율을 보였다.

  • PDF

액체로켓용 Unlike-doublet 인젝터의 혼합특성 연구 (A Study on Mixing Characterization of Unlike-doublet Injector for Liquid Rocket Engine)

  • 이인수;정기훈;임병직;윤영빈
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.21-28
    • /
    • 2002
  • The mixing of propellant and its mass distribution of unlike-doublet impinging injector, which is known to affect the combustion efficiency significantly, have been studied using PLIF(Planar Laser Induced Fluorescence). The results show that fuel jet penetrates considerably into the oxidizer jet at impinging point as variation of momentum ratio. and then stream flows inclined because of variation of momentum ratio. Consequently, the mixing efficiency shows that maximum efficiency is at MR=3. after MR=3, mining efficiency decreases slightly.

  • PDF

F-O-O-F 충돌형 injector의 분무특성 및 혼합성능에 관한 실험적 연구 (An Experimental Study on the Characteristics of Spray Pattern and the Mixing Performance of Unlike-impinging Split Triplet Injector(F-O-O-F))

  • 이광진;문덕용;김유
    • 한국추진공학회지
    • /
    • 제3권3호
    • /
    • pp.1-8
    • /
    • 1999
  • $H_2$O/Kerosene을 사용하여 Unlike 충돌형 인젝터(FOOF형)에서 산화제와 연료의 운동량비 변화에 따른 혼합효율을 측정하였다. 모의 추진제의 운동량비 1.5(총혼합비 1.89)에서 혼합성능은 최대 값을 나타내었으며 모의 추진제의 실험결과는 실제 추진제인 LOX/Kerosene에 적용하여 혼합특성속도 효율을 예측하였다 연구 결과 혼합특성속도 효율은 운동량비 2.0에서 최대 값을 나타내었다. 이러한 예측은 실제 연소실험을 통하여 얻어진 연소효율과 약간의 차이는 있으나 초기설계자료로서 충분한 가치가 있는 것으로 판단된다.

  • PDF

Modified mixing coefficient for the crossflow between sub-channels in a 5 × 5 rod bundle geometry

  • Lee, Jungjin;Lee, Jun Ho;Park, Hyungmin
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2479-2490
    • /
    • 2020
  • We performed experiments to measure a single-phase upward flow in a 5 × 5 rod bundle with spacer grids using a particle image velocimetry, focusing on the crossflow. The Reynolds number based on the hydraulic diameter and the bulk velocity is 10,000. The ratio of pitch between rods and rod diameter is 1.4 and spacer grid is installed periodically. The turbulence in the rod bundle results from the combination of a forced mixing and natural mixing. The forced mixing by the spacer grid persists up to 10Dh from the spacer grid, while the natural mixing is attributed to the crossflow between adjacent subchannels. The combined effects contribute to a sinusoidal distribution of the time-averaged stream-wise velocity along the lateral direction, which is relatively weak right behind the spacer grid as well as in the gap. The streamwise and lateral turbulence intensities are stronger right behind the spacer grid and in the gap. Based on these findings, we newly defined a modified mixing coefficient as the ratio of the lateral turbulence intensity to the time-averaged streamwise velocity, which shows a spatial variation. Finally, we compared the developed model with the measured data, which shows a good agreement with each other.

Global measures of distributive mixing and their behavior in chaotic flows

  • Tucker, Charles L.;Peters, Gerrit W.M.
    • Korea-Australia Rheology Journal
    • /
    • 제15권4호
    • /
    • pp.197-208
    • /
    • 2003
  • Two measures of distributive mixing are examined: the standard deviation $\sigma$ and the maximum error E, among average concentrations of finite-sized samples. Curves of E versus sample size L are easily interpreted in terms of the size and intensity of the worst flaw in the mixture. E(L) is sensitive to the size of this flaw, regardless of the overall size of the mixture. The measures are used to study distributive mixing for time-periodic flows in a rectangular cavity, using the mapping method. Globally chaotic flows display a well-defined asymptotic behavior: E and $\sigma$ decrease exponentially with time, and the curves of E(L) and $\sigma$ (L) achieve a self-similar shape. This behavior is independent of the initial configuration of the fluids. Flows with large islands do not show self-similarity, and the final mixing result is strongly dependent on the initial fluid configuration.

생체흡수성 HA/PLLA 복합재료의 용융혼련조건이 파괴특성에 미치는 영향 (Effect of Melt-mixing Conditions on Fracture Properties of Bioabsorbable HA/PLLA Composite Materials)

  • 박상대;이덕보
    • 대한기계학회논문집A
    • /
    • 제31권7호
    • /
    • pp.732-738
    • /
    • 2007
  • Effects of melt-mixing conditions on fracture properties of hydroxyapatite filled bioabsorbable poly(L-lactic acid)(HA/PLLA) composites was investigated by measuring the firacture toughness value of HA/PLLA composites prepared under different mixing time and rotor speed. The fracture surface morphology was also examined by profile measurement and scanning electron microscopies. It was found that the fracture toughness of HA/PLLA composites decreases due to decrease of ductile deformation of PLLA matrix and debonding of interfaces with increase of the rotor speed and mixing time. Effect of mixing process on neat PLLA was also assessed, and it was found that the fracture toughness of PLLA decreases due to disappearance of multiple craze formation and increase of defects. Such thermal and shear-stress degradation were found to be the primary mechanisms of the degradation of HA/PLLA composites during melt-mixing process.

Numerical Study on Mixing Performance of Straight Groove Micromixers

  • Hossain, Shakhawat;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권3호
    • /
    • pp.227-234
    • /
    • 2010
  • Numerical analyses have been performed to investigate the effects of geometric parameters of a straight groove micromixer on mixing performance and pressure drop. Three-dimensional Navier-Stokes equations with two working fluids, water and ethanol have been used to calculate mixing index and pressure drop. A parametric study has been carried out to find the effects of the number of grooves per cycle, arrangement of patterned walls, and additional grooves in triangular dead zones between half cycles of grooves. The three arrangements of patterned walls in a micromixer, i.e., single wall patterned, both walls patterned symmetrically, and both walls patterned asymmetrically, have been tested. The results indicate that as the number of grooves per cycle increases the mixing index increases and the pressure drop decreases. The microchannel with both walls patterned asymmetrically shows the best mixing performance among the three different arrangements of patterned walls. Additional grooves confirm the better mixing performance and lower pressure drop.

Optimum shape and process design of single rotor equipment for its mixing performance using finite volume method

  • Kim, Nak-Soo;Lee, Jae-Yeol
    • Korea-Australia Rheology Journal
    • /
    • 제21권4호
    • /
    • pp.289-297
    • /
    • 2009
  • We numerically analyzed flow characteristics of the polymer melt in the screw equipment using a proper modeling and investigated design parameters which have influence on the mixing performance as the capability of the screw equipment. We considered the non-Newtonian and non-isothermal flow in a single rotor equipment to investigate the mixing performance with respect to screw dimensions as shape parameter of the single rotor equipment and screw speed as process parameter. We used Bird-Carreau-Yasuda model as a viscous model of the polymer melt and the particle tracking method to investigate the mixing performance in the screw equipment and considered four mixing performance indexes: residence time distribution, deformation rate, total strain and particle standard deviation as a new mixing performance index. We compared these indexes to determine design parameters and object function. On basis of the analysis results, we carried out the optimal design by using the response surface method and design of experiments. In conclusion, the differences of results between the optimal value and numerical analysis are about 5.0%.