• 제목/요약/키워드: Mechanical loss

검색결과 2,457건 처리시간 0.027초

소음기 구성요소의 소음 및 배압특성에 관한 연구 (A Study on the Transmission Loss and Back Pressure of Muffler Elements)

  • 황원걸;이유엽;오재응;김기세;송용희
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.147-153
    • /
    • 2002
  • The exhaust muffler is designed to reduce the engine noise with the minimum back pressure. It is composed of several elements, and we chose the five types of muffler elements : expansion, extended, offset, reversal, and perforated type. These elements are modeled with I-DEAS, and the transmission loss is analyzed with SYSNOISE, and the back pressure with STAR-CD. We verified the numerical results of transmission loss and pressure loss by experiments for the case of extended muffler. We find a database with the numerical results, which can be used in the design of exhaust muffler in the field.

축류압축기 익렬에서의 역류 유동 특성에 대한 수치적 연구 (Numerical Study on Reverse Flow Charcteristics in an Axial Compressor Cascade)

  • 손창현
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.615-622
    • /
    • 2000
  • Numerical simulation is performed with Denton's code to get pressure loss coefficients in wide range of reverse flow incidence(from -90 degree to +85 degree) for an axial compressor cascade. As a results, it is found that the pressure loss coefficient is increased with incidence and there exist critical incidence which corresponds to the maximum pressure loss coefficient. Pressure loss coefficient with bigger incidence than its critical value is decreased. The effect of increasing incidence in a cascade extremely reduce the mass flow rate by the large flow separation region. Consequently this effect reduce the portion of dynamic pressure in the total pressure loss and beyond the critical incidence the pressure loss coefficient decrease.

열화된 스테인리스강의 마모특성에 관한 연구 (A Study on Wear Characteristics of Degraded Stainless Steel)

  • 조승덕;안석환;남기우
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.21-30
    • /
    • 2017
  • This study deals with the characteristics of degraded stainless steel. Stainless steel is heat treated to ensure mechanical properties when designing or manufacturing machinery parts or equipment. In this study, the mechanical properties and wear characteristics of three kinds of stainless steels after artificially heat-treated at 753 K~993 K, where chrome depletion occurs near the grain boundary, were evaluated. The microstructure and fracture surface were also observed. From the results, friction coefficient and wear loss decreased with increasing the heat treatment temperature regardless of the type of stainless steel. Also, as the tensile strength increased, the friction coefficient and wear loss decreased. Wear loss showed proportional to a tendency to increase with increasing friction coefficient.

Windmilling Characteristics of Centrifugal-Flow Turbojets

  • Yoo, Il-Su;Song, Seung Jin;Lim, Jin Shik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.2021-2031
    • /
    • 2004
  • A new nondimensional method for predicting the windmilling performance of centrifugal -flow turbojet engines in flight has been developed. The method incorporates loss correlations to estimate the performance of major engine components. Given basic engine geometry, flight Mach number, and ambient conditions, this method predicts transient and steady-state windmilling performance. Thus, this method can be used during the preliminary design stage when detailed hardware geometry and component performance data are not yet available. A nondimensional time parameter is newly defined, and using this parameter, the transient performance of different types of turbojets (e.g. centrifugal vs. axial) is compared. In addition, the predictions' sensitivity to loss correlations, slip factors, and inlet ambient temperatures are analyzed.

Analysis of Mechanical Fixation Made of Aluminum Alloy in an Axial Flux Permanent Magnet Machine

  • Lee, Jiyoung;Park, Byounggung;Koo, Daehyun
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.309-313
    • /
    • 2014
  • This paper presents an eddy current loss analysis of a Mechanical Fixation (MF) made of 6061 aluminum alloy, which is used for an NS type double-rotor single-stator axial flux permanent magnet machine. The prototype MF made of aluminum alloy shows good mechanical performance, but poor electro-magnetic performance, since the machine's efficiency can decrease because of eddy current loss in the MF. In order to prevent efficiency decrease, a modification of the MF structure is also introduced. Three-dimensional finite element analysis (FEA) is used for magnetic field analysis, and eddy current losses are computed. The analysis results are compared to, and verified by the test results.

압전 션트를 이용한 스마트 패널의 투과 손실 관한 연구 (Study on Transmission Loss in Smart Panel Using Piezoelectric Shunt)

  • ;김흥수;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.541-544
    • /
    • 2005
  • In this paper, admittance is introduced to represent electro-mechanical characteristics of piezoelectric structures and to predict the performance of piezoelectric shunt system. Finite element method is used to obtain numerical admittance. In order to illuminate the effect of noise reduction in the shunt system, two experimental setups were constructed. One is for matching the resonant shunt damping. The other is a standard test setup according to SAE J1400 used to measure the transmission loss for the smart panel with shunt circuit. Shunt performance and noise reduction of smart panel are realized by these two experiments.

  • PDF

비뉴턴 유체의 협착관내 압력손실계수에 관한 연구 (A study on the pressure loss coefficient of non-Newtonian fluids in the stenotic tubes)

  • 서상호;유상신;장남일
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1603-1612
    • /
    • 1996
  • The pressure loss coefficient of Newtonian and non-Newtonian fluids such as water, aqueous solutions of Carbopol-934 and Separan AP-273 and blood in the stenotic tubes are determined experimentally and numerically. The numerical analyses for flows of non-Newtonian fluids in the stenotic tubes are conducted by the finite element method. The effect of the contraction ratio and the ratio of length to diameter on the pressure drop are investigated by the experiments and numerical analysis. The pressure loss coefficients are significantly dependent upon the Reynolds number in the laminar flow regime. As Reynolds number increases, the pressure loss coefficients of both Newtonian and non-Newtonian fluids decrease in the laminar flow regime. As the ratio of length to diameter increases the maximum pressure loss coefficient increases in the laminar flow regime for both Newtonian and non-Newtonian fluids. Newtonian fuid shows the highest values of pressure loss coefficient and blood the next, followed by Carbopol solution and Separan solution in order. Experimental results are used to verify the numerical analyses for flows of Newtonian and non-Newtonian fluids. Numerical results for the maximum pressure loss coefficient in the stenotic tubes are in fairly good agreement with the experimental results. The relative differences between the numerical and experimental results of the pressure loss coefficients in the laminar flow regime range from 0.5% to 14.8%.

An Experimental Study of the Performance Characteristics with Four Different Rotor Blade Shapes on a Small Mixed-Type Turbine

  • Cho Soo-Yong;Cho Tae-Hwan;Choi Sang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1478-1487
    • /
    • 2005
  • A small mixed-type turbine with a diameter of 19.9 mm has been substituted for a rotational part of pencil-type air tool. Usually, a vane-type rotor is applied to the rotational part of the air tool. However, the vane-type rotor has some problems, such as friction, abrasion, and necessity of accurate assembly etc.,. These problems make the life time of the vane-type air tool short, but air tools operated by mixed-type turbines are free of friction and abrasion because the turbine rotor dose not contact with the casing. Moreover, it is assembled easily because of no axis offset. These characteristics are merits for using air tools, but loss of power is inevitable on a non-contacting type rotor due to flow loss, tip clearance loss, and profile loss etc.,. In this study, four different rotors are tested, and their characteristics are investigated by measuring the specific output power. Additionally, optimum nozzle location against the rotor is studied. Output powers are obtained through measured pressure, temperature, torque, rotational speed, and flow rate. The experimental results obtained with four different rotors show that the rotor blade shape greatly influences to the performance, and the optimum nozzle location exists near the mid span of the rotor.

모래 3체 마모시험 장비(3-body abrasion tester)를 이용한 PLA프린팅 표면의 형상별 트라이볼로지 성능 분석 (Tribology Performance Analysis by Surface Patterns of PLA Printing Samples Using 3-body Abrasion Tester)

  • 최용석;박경렬;강성민;김운성;정경은;박영진;이경준
    • Tribology and Lubricants
    • /
    • 제39권6호
    • /
    • pp.250-255
    • /
    • 2023
  • This study applies various surface patterns to minimize material loss in construction equipment that is subject to severe wear due to sand, such as the wear-resistant steel plates of dump trucks or the teeth of excavators. The relationship between surface morphology and wear behavior is investigated using PLA+ polymer to observe the effect of the surface pattern. Five types of samples - smooth, concave, convex, wavy concave, and wavy convex designs - are created using a 3D printer. A wear experiment is conducted for a duration of 3 h using 6.5 kg of abrasive particles. The mass loss of the samples after the experiment is measured to assess the extent of wear. Additionally, the surface morphology of the samples before and after the experiment is analyzed using SEM and confocal microscopy. The study results reveal that the smooth design exhibits the highest wear loss, whereas the concave and wavy concave designs show relatively lower wear loss. The convex and wavy convex designs exhibit varying contact areas with the abrasive particles depending on the surface pattern, resulting in different levels of wear. Furthermore, a comparison between the experimental results and DEM simulations confirms the observed wear trends. This study reveals the relationship between wear damage according to surface pattern shape and is expected to be of substantial help in the analysis of wear and tear on agricultural and heavy equipment.

복합재료의 전기적 절연특성과 개발에 관한 연구(I) (A Study on the Dielectric Strength of Composite Materials(I))

  • 정은식;강창남;박정후
    • 대한전기학회논문지
    • /
    • 제34권8호
    • /
    • pp.323-330
    • /
    • 1985
  • Dielectric loss tangent and ac dielectric strength of GFRP (Glass Fiber Reinforced Plastics, G-10)was investigated as parameters of mechanical and thermal stresses, in order to study the basic dielectrical characteristics of composite insulating materials. The dielectric loss tangent was increased and the ac dielectric strength was decreased with increase in the mechanical stresses beyond the mechanical yield point on account of fiber-matrix debonding, but the dielectric constant was not varied sigificantly. the dielectric strength of G-10 was about 2 MV/cm and the dielectric constant was about 4.8.

  • PDF