• Title/Summary/Keyword: Mechanical joint

Search Result 2,041, Processing Time 0.027 seconds

Biomechanical Evaluation of Cement type hip Implants as Conditions of bone Cement and Variations of Stem Design (골시멘트 특성 및 스템 형상에 따른 시멘트 타입 인공관절의 생체역학적 평가)

  • Park, H.S.;Chun, H.J.;Youn, I.C.;Lee, M.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.212-221
    • /
    • 2008
  • The total hip replacement (THR) has been used as the most effective way to restore the function of damaged hip joint. However, various factors have caused some side effects after the THR. Unfortunately, the success of the THR have been decided only by the proficiency of surgeons so far. Hence, It is necessary to find the way to minimize the side effect caused by those factors. The purpose of this study was to suggest the definite data, which can be used to design and choose the optimal hip implant. Using finite element analysis (FEA), the biomechanical condition of bone cement was evaluated. Stress patterns were analyzed in three conditions: cement mantle, procimal femur and stem-cement contact surface. Additionally, micro-motion was analyzed in the stem-cement contact surface. The 3-D femur model was reconstructed from 2-D computerized tomography (CT) images. Raw CT images were preprocessed by image processing technique (i.e. edge detection). In this study, automated edge detection system was created by MATLAB coding for effective and rapid image processing. The 3-D femur model was reconstructed based on anatomical parameters. The stem shape was designed using that parameters. The analysis of the finite element models was performed with the variation of parameters. The biomechanical influence of each parameter was analyzed and derived optimal parameters. Moreover, the results of FE A using commercial stem model (Zimmer's V erSys) were similar to the results of stem model that was used in this study. Through the study, the improved designs and optimal factors for clinical application were suggested. We expect that the results can suggest solutions to minimize various side effects.

Characteristics Analysis of CVT with Built-in Crank for Bicycle (자전거용 크랭크 일체형 자동변속기에 대한 특성 해석)

  • Baek, Seung-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.963-969
    • /
    • 2015
  • Bicycle is one of the most popular mode of transport due to the increase of interest in the well-being and environment pollution. Before fabricating a continuously variable transmission that is applied to the actual bicycle, for reducing the problems in the early stage, the reliable simulation program has been applied and the financial problem can be solved. In this paper, in order to confirm the design factor, the stress analysis has been applied. In all models, each link and the joint portion are assumed to be a major design factors, and impact of each link and joints received stress during the operation and it is confirmed by using the CAE. Also, for the analysis region, the special code has been developed to calculate pulsation phenomenon through appropriate mathematical modeling.

Transmission of ultrasonic guided wave for damage detection in welded steel plate structures

  • Liu, Xinpei;Uy, Brian;Mukherjee, Abhijit
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.445-461
    • /
    • 2019
  • The ultrasonic guided wave-based technique has become one of the most promising methods in non-destructive evaluation and structural health monitoring, because of its advantages of large area inspection, evaluating inaccessible areas on the structure and high sensitivity to small damage. To further advance the development of damage detection technologies using ultrasonic guided waves for the inspection of welded components in structures, the transmission characteristics of the ultrasonic guided waves propagating through welded joints with various types of defects or damage in steel plates are studied and presented in this paper. A three-dimensional (3D) finite element (FE) model considering the different material properties of the mild steel, high strength steel and austenitic stainless steel plates and their corresponding welded joints as well as the interaction condition of the steel plate and welded joint, is developed. The FE model is validated against analytical solutions and experimental results reported in the literature and is demonstrated to be capable of providing a reliable prediction on the features of ultrasonic guided wave propagating through steel plates with welded joints and interacting with defects. Mode conversion and scattering analysis of guided waves transmitted through the different types of weld defects in steel plates are performed by using the validated FE model. Parametric studies are undertaken to elucidate the effects of several basic parameters for various types of weld defects on the transmission performance of guided waves. The findings of this research can provide a better understanding of the transmission behaviour of ultrasonic guided waves propagating through welded joints with defects. The method could be used for improving the performance of guided wave damage detection methods.

Development of Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브 개발)

  • Lee, Young-Ho;Song, Jae-Joon;Cho, Jae-Young;Kim, Do-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.67-73
    • /
    • 2011
  • This study aims to develop an economical precast hollow concrete column with high constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. With this purpose, this study performed the finite element analysis and tension test by using some variables such as length of sleeve, diameter of rebar and curing method for suggesting a grouting type splice sleeve which is a new type joint rebar and developing an optimized splice sleeve. As a result, the analysis on the tension performance of splice sleeve did not show any destruction caused by pull-out in reinforcing bar but it only occurred destruction of tension bar or bolt shear rupture from the mechanical defect of sleeve. Therefore, the experiment showed high performance in tension of the suggested splice sleeve and verified the application of precast hollow concrete column.

Short-Term Results of Hybrid Closed-Wedge High Tibial Osteotomy: A Case Series with a Minimum 3-Year Follow-up

  • Saito, Hidetomo;Saito, Kimio;Shimada, Yoichi;Yamamura, Toshiaki;Yamada, Shin;Sato, Takahiro;Nozaka, Koji;Kijima, Hiroaki;Miyakoshi, Naohisa
    • Knee surgery & related research
    • /
    • v.30 no.4
    • /
    • pp.293-302
    • /
    • 2018
  • Purpose: High tibial valgus osteotomy (HTO) is a well-established surgical procedure for patients with medial compartment osteoarthritis (OA) of the knee. The hybrid closed-wedge HTO (CWHTO) procedure permits extensive correction in patients with severe deformities or patellofemoral joint OA. The aim of this study was to report the short-term results in a consecutive series of patients treated with hybrid CWHTO. Materials and Methods: We retrospectively evaluated the clinical outcomes and radiographic parameters in 29 consecutive knees that underwent hybrid CWTHO to correct medial compartment OA at an average follow-up of 52.6 months. Clinical outcomes were assessed using the Lysholm score and knee scoring system of the Japanese Orthopedic Association (JOA). The Kellgren-Lawrence grading system and pre- and postoperative mechanical axis (MA), femorotibial angle (FTA), posterior tibial slope, and patella height were assessed. Results: The FTA and MA significantly changed from $180.7^{\circ}$ to $170.4^{\circ}$ and from $22.0^{\circ}$ to $60.2^{\circ}$, respectively. No significant differences were observed between the mean pre- and postoperative posterior tibial slope, Insall-Salvati ratio, or Caton-Deschamps index. The postoperative JOA and Lysholm scores significantly improved from 76.7 to 95.8 and from 58.8 to 90.2, respectively. Conclusions: Satisfactory outcomes can be achieved with hybrid CWHTO in patients with medial OA.

A Convergence Study through Durability Analysis due to the Configuration of Automotive Frame Butted (자전거 프레임 버티드 형상에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.271-276
    • /
    • 2018
  • When the driver riding in a bicycle goes on board, the load of driver is shown differently according to the position loaded on the frame of bicycle. The load is applied most at the joint of bike frame and the load at the mid-part of frame is applied least than the other parts. So, the weight of frame is decreased as the part not applied with a lot of load is manufactured into the thin thickness. As the part applied with high load is manufactured into the thick thickness, it can be endured through this load. The configurations of general frame, double butted and triple butted were modelled by using CATIA program. The durabilities of each model due to the load of passenger were investigated by carrying the structural and fatigue analyses. As this study result investigated with the analysis program of ANSYS, the deformation of general frame happened most and that of triple butted became least. These simulation analysis data are intended to be used to design the actual bicycle frame in the most efficient way at design and manufacture.

Application of power spectral density function for damage diagnosis of bridge piers

  • Bayat, Mahmoud;Ahmadi, Hamid Reza;Mahdavi, Navideh
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.57-63
    • /
    • 2019
  • During the last two decades, much joint research regarding vibration based methods has been done, leading to developing various algorithms and techniques. These algorithms and techniques can be divided into modal methods and signal methods. Although modal methods have been widely used for health monitoring and damage detection, signal methods due to higher efficiency have received considerable attention in various fields, including aerospace, mechanical and civil engineering. Signal-based methods are derived directly from the recorded responses through signal processing algorithms to detect damage. According to different signal processing techniques, signal-based methods can be divided into three categories including time domain methods, frequency domain methods, and time-frequency domain methods. The frequency domain methods are well-known and interest in using them has increased in recent years. To determine dynamic behaviours, to identify systems and to detect damages of bridges, different methods and algorithms have been proposed by researchers. In this study, a new algorithm to detect seismic damage in the bridge's piers is suggested. To evaluate the algorithm, an analytical model of a bridge with simple spans is used. Based on the algorithm, before and after damage, the bridge is excited by a sine force, and the piers' responses are measured. The dynamic specifications of the bridge are extracted by Power Spectral Density function. In addition, the Least Square Method is used to detect damage in the bridge's piers. The results indicate that the proposed algorithm can identify the seismic damage effectively. The algorithm is output-only method and measuring the excitation force is not needed. Moreover, the proposed approach does not need numerical models.

The Prevention Effect of Seawater Penetration of Gel Coat Applied in Repair of FRP Fishing Vessel (FRP 어선 보수에 적용되는 겔코트의 해수 침투 방지 효과)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.15-21
    • /
    • 2018
  • Ships may collide with reefs or other objects during operation, when arriving or departing ports. The hull plate may be damaged due to the contact with other ships. The total number of domestic powered fishing vessels has decreased, but that of FRP fishing vessels has increased by 0.7% and the ratio of FRP fishing vessels to the total fishing vessels increased to 96%. Recently, fishing vessels has been used as fishing boats for income of non-fishermen as well as fishermen. Therefore, safety management for repair and maintenance is necessary. The penetration of moisture and moisture in the composite material such as FRP may deteriorate the mechanical properties and the salt (NaCl) component of the damaged portion may cause a relatively high deterioration in material strength. The gel coat painting is the final stage of repairs ans maintenance of FRP fishing vessels. The thickness criteria in the domestic and foreign gel coat is 0.3~0.762 mm. The joint specimens, which was immersed in seawater for 120 days, were compared with those without seawater immersion. As a result, the tensile strength was 83 ~ 121.8% and the flexural strength was 83 ~ 113% compared with the specimens without seawater immersion. According to the previous study the tensile strength decreased by more than 29% and the flexural strength decreased by more than 50% when the composite material was immersed in seawater for 1,083 hours without coating. As a result, it was found that the gel coat with 0.5 mm thickness is very effective in preventing the strength decrease of the composite material.

Analysis of AI-Applied Industry and Development Direction (인공지능 적용 산업과 발전방향에 대한 분석)

  • Moon, Seung Hyeog
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.77-82
    • /
    • 2019
  • AI is applied increasingly to overall industries such as living, medical, financial service, autonomous car, etc. thanks to rapid technology development. AI-leading countries are strengthening their competency to secure competitiveness since AI is positioned as the core technology in $4^{th}$ Industrial Revolution. Although Korea has the competitive IT infra and human resources, it lags behind traditional AI-leaders like United States, Canada, Japan and, even China which devotes all its might to develop intelligent technology-intentive industry. AI is the critical technology influencing on the national industry in the near future according to advancement of intelligent information society so that concentration of capability is required with national interest. Also, joint development with global AI-leading companies as well as development of own technology are crucial to prevent technology subordination. Additionally, regulatory reform and preparation of related law are very urgent.

Effect of Shearing Speed and UBMs on High Speed Shear Properties of Sn3.0Ag0.5Cu Solder Ball (Sn3.0Ag0.5Cu 솔더 볼의 고속 전단특성에 미치는전단속도 및 UBM층의 영향)

  • Jung, Do-Hyun;Lee, Wang-Gu;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.635-641
    • /
    • 2011
  • The effect of high shear speed on shear force, shear energy and fracture surface was investigated for the solder joint of a $Sn-_{3.0}Ag-_{0.5}Cu$ ball. For both ENIG and OSP pads, the shear force increased with an increase in shearing speed to 0.3 m/s. However, for an ENEPIG pad, the shear force increased with an increase in shear speed to 0.6 m/s and kept almost constant afterward. The shear energy decreased with an increase in shearing speed for ENIG and OSP pads. For the ENEPIG pad, however, the shear energy almost remained constant in a shearing speed range 0.3-3.0 m/s. The fracture mode analysis revealed that the amount of brittle fracture for the ENIG and the OSP pads increased with shearing speed, and a complete brittle fracture appeared at 1.0 m/s for ENIG and 2.0 m/s for OSP. However, the ENEPIG pad showed only a ductile fracture until 0.25 m/s, and a full brittle fracture didn't occur up to 3.0 m/s. The fracture mode matched well with the shear energy. The results from the high speed shear test of SAC305 were similar to those of SAC105.