• Title/Summary/Keyword: Mechanical imbalance

Search Result 88, Processing Time 0.02 seconds

The Imbalance Compensation in CMG ('제어모멘트자이로'의 질량불균형 보정)

  • Lee, Jong-Kuk;Song, Tae-Seong;Kang, Jeong-Min;Song, Deok-Ki;Kwon, Jun-Beom;Seo, Joong-Bo;Oh, Hwa-Suk;Cheon, Dong-Ik;Hong, Young-Gon;Lee, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.861-871
    • /
    • 2020
  • Raising the speed of the momentum wheel in the CMG increases the unintended force and torque caused by mass imbalance. This unintended force and torque should be minimized to get the better quality of satellite SAR image because they lead to the vibration of the output image. This paper shows the works on compensating the static imbalance and couple mass imbalance in the CMG wheel. First, the force and torque at the center of mass generated by the mass imbalance were predicted through M&S analysis. Second, the force and torque were estimated similarly through the M&S analysis when the measurement point was moved from the rotation center. Third, the measurement configuration for the force and torque by the mass imbalance was described. Fourth, the change of the force and torque by adding the specified mass to the momentum wheel was observed after comparing the measurements with the results of the M&S. And finally, the effect of the compensation was analyzed by comparing the force and torque before and after the correction while 24Nm class CMG was running in the standby mode.

Reaction Wheel Disturbance Reduction Method Using Disturbance Measurement Table

  • Cheon, Dong-Ik;Jang, Eun-Jeong;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • Momentum changing actuators like reaction wheels and control moment gyros are generally used for spacecraft attitude control. This type of actuators produces force and torque disturbances. These disturbances must be reduced since they degrade the quality of spacecraft attitude control. Major disturbances are mainly due to static and dynamic imbalances. This paper gives attention to the reduction of the static and dynamic imbalance. Force/torque measurement system is used to measure the disturbance of the test reaction wheel. An identification method for the location and magnitude of the imbalance is suggested, and the corrections of the imbalance are performed using balancing method. Through balancing, the static and dynamic imbalance is remarkably reduced.

On the new mold structure with multi-point gate for filling-balance mold (사출성형시 불균형 충전에 관한 다구찌 실험계획법을 이용한 성형공정의 최적화)

  • Hong, Youn-Suk;Han, Dong-Hyup;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.13-16
    • /
    • 2007
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system.

  • PDF

Flow Analysis of Filling Imbalance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 충전불균형 유동해석 모델)

  • Jang, Min-Kyu;Go, Seung-Woo;Kim, Yeong-Min;Noh, Byeong-Su;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.16-20
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing; However, even though geometrically balanced runner is used, filling imbalances have been observed. In these day, the CAE has been used widely in injection molding. However, CAE with fusion mesh can't indicate such as jetting, flow mark and filling imbalance in multi cavity mold. In this study, we investigated the filling imbalance according to runner shapes by CAE analysis. As a result in CAE, in case of binary branch runner system, filling imbalance was indicated between cavity to cavity, but the flow pattern of each cavity uniformed in unary branch runner system.

  • PDF

On the new mold structure with multi-point gate for filling-balance mold (다점 핀포인트 금형에서 균형충전이 가능한 사출금형 구조)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.25-29
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and ploymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system. The filling imbalance was desreased up to result range of $3{\leq}DFI{\leq}8(%)$ by using a new runner system for balanced filling.

  • PDF

A Real-Time DSP-Based Imbalance Analysis System for Rotating Machine with Vibration Signal

  • Su Hua;Huang Linglong;Chong Kil To
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1243-1252
    • /
    • 2005
  • This paper describes a new digital signal processor (DSP) imbalance measurement system dedicated to real-time vibration analysis on rotating machine. To accomplish real-time analysis, the vibration signals are on-line acquired and processed to analyze the mass imbalance and phase position. This is achieved through the use of FFT and Lissajous diagram. The method followed to analyze the mass imbalance with the chosen hardware and software solutions are described in detail in this paper. Several experimental tests demonstrate the efficiency and accuracy in imbalance analysis performance of the DSP system.

Injection Molding 3D CAE Applications for Estimating Filling Imbalance Using a New Runner system meshing (새로운 3D 멧싱 기법으로 충전 불균형을 예측할 수 있는 사출성형 CAE 활용)

  • Go, Seung-Woo;Jung, Su-Jung;Seo, Sang-hun;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.31-36
    • /
    • 2012
  • Now days CAE has been used for almost all injection molding designs in order to find the best injection conditions. Almost all CAE use 2-D mesh, but the CAE with 2-D mesh can't indicate such as jetting, flow-mark and filling imbalance in multi cavity mold. In this study, we suggested a new 3D meshing. the method which can indicate the filling imbalance in geometrically balanced runner system with Mold Flow MPI 6.1 and we found out that the calculation times are saved. As a feasibility study, we verified that Melt Flipper, RC Pin etc appeared the balanced filling behaviors. of geometrically balanced runner system and Melt Flipper, filling imbalance was indicated more accurately.

  • PDF

Injection Molding 3D CAE Applications for Estimating Filling Imbalance Using a New Runner system meshing (새로운 3D 멧싱 기법으로 충전 불균형을 예측할수 있는 사출성형 CAE 활용)

  • Go, Seung-Woo;Jung, Su-Jung;Seo, Sang-Hun;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.121-127
    • /
    • 2008
  • Nowdays CAE has been used for almost all injection molding designs in order to find the best injection conditions. Almost all CAE use 2-D mesh, but the CAE with 2-D mesh can't indicate such as jetting, flow-mark and filling imbalance in multi cavity mold. In this study, we suggested a new 3D meshing. the method which can indicate the filling imbalance in geometrically balanced runner system with Mold Flow MPI 6.1 and we found out that the calculation times are saved. As a feasibility study, we verified that Melt Flipper, RC Pin etc appeared the balanced filling behaviors. of geometrically balanced runner system and Melt Flipper, filling imbalance was indicated more accurately.

  • PDF

The Pressure and Degree of Filling Balance between Cavity to Cavity in Multi-Cavity Injection Mold (다수 캐비티 금형에서 캐비티 간의 압력과 균형충전도)

  • Noh, Byeong-Su;Park, Tae-Won;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.33-37
    • /
    • 2008
  • Almost all injection molds have multi-cavity, which are designed with geometrically balanced runner system in order to made filling balance between cavity to cavity during injection molding. However, filling imbalance has been existed in the geometrically balanced runner system. In this study, we made an experiment and investigated that are filling balanced according to material. Also, in case of filling imbalance was occurred, we conducted experiments in order to find out difference of cavity pressure with cavity pressure sensor. When filling imbalance was occurred between cavity to cavity, we investigated the filling imbalance and pressure differences by computer-aided engineering(CAE).

  • PDF

Optimization of Processing on Filling Balance of the HR3P Mold Structure (균형충전을 위한 HR3P 금형 구조에서의 공정의 최적화)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.98-102
    • /
    • 2009
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance has been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system. The filling imbalance was decreased up to result range of $3{\leq}DFI{\leq}8(%)$ by using a new runner system for balanced filling.