• Title/Summary/Keyword: Mechanical forming

Search Result 1,391, Processing Time 0.026 seconds

Study on Spring-Back Effect according to Roll Gap and Forming Velocity of Roll Forming Process (롤 포밍 공정의 롤 갭과 성형속도에 따른 스프링 백 영향 연구)

  • Kim, Dong Hong;Yoon, Dae-Hwan;Seol, Sang-Seok;Jung, Dong Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.477-483
    • /
    • 2016
  • The spring-back and bow phenomenon in the roll forming process are important factors regarding the accuracy of evaluation of production goods. The purpose of this study was to determine the influence of spring-back and bow phenomenon according to the main variables (forming velocity and roll gap). The material of the forming sheet was high tension steel (SPFH 590), which has been used commonly in recent years. In order to accurately measure the spring-back and bow phenomenon, the forming sheet was formed into a V-shape. The study was applied to OFAT (One Factor at a Time) experimentation, with respect to the experimental variables (the forming speed and the roll gap). In the experimental results, the forming speed had a small influence on the spring-back and bow phenomenon. However, the roll gap had a greater influence on the springback and the bow phenomenon, as opposed to the forming speed.

Study on Scratch Defect of Roll Forming Process (롤포밍공정에서의 스크래치 결함에 대한 연구)

  • Kim, Nak-Su;Hong, Seok-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1213-1219
    • /
    • 2001
  • In this paper, modeling of the multi-pass roll forming process with the finite element method and defect prediction in roll forming process are presented. In the roll forming process, there occurs the defect of scratch. It appears on tubes because of the friction between the strip and the roll, the unexpected sliding velocity and the contact pressure when fabricating the tubes. The surface of the product will be not uniform due to the defect. The scratch can be predicted with the simulation modeling of the finite element method, and can be avoided by modifying the design.

Forming Limit Diagram of DP590 considering the Strain Rate (변형률속도를 고려한 DP590의 성형한계도)

  • Kim, Seok-Bong;Ahn, Kwang-Hyun;Ha, Ji-Woong;Lee, Chang-Soo;Huh, Hoon;Bok, Hyun-Ho;Moon, Man-Been
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.127-130
    • /
    • 2010
  • This paper deals with the formability of DP590 steel considering the strain rate. The strain hardening coefficient, elongation and r-value were obtained from the static and dynamic tensile test. As strain rate increases from static to 100/s, the strain hardening coefficient and the uniform elongation decrease and the elongation at fracture and r-value decrease to 0.1/s and increase again to 100/s. The high speed forming limit tests with hemi-spherical punch were carried out using the high speed crash testing machine and high speed forming jig. The high speed forming limit of DP590(order of $10^2$/s) decreases compared to the static forming limit(order of $10^{-3}$/s) and the forming limit band in high speed forming test is narrower than that in the static forming test. This tendency may be due to the development of brittleness with increase of stain rate.

Blank Design and Strain Prediction in Sheete Metal Forming Process (박판금속 성형공정에서의 블랭크 설계및 변형률 예측)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1810-1818
    • /
    • 1996
  • A new finite elemetn approach is introduced for direct prediction of bland shapes and strain distributions from desired final shapes in sheet metal forming. The approach deals with the geometric compatibility of finite elements, plastic deformation theory, minimization of plastic work with constraints, and a proper initial guess. The algorithm developed is applied to cylindrical cup drawing, square cup drawing, and fron fender forming to confirm its validity by demonstratin reasonable accurate numerical results of each problems. Rapid calculation with this algorithm enables easy determination of various process variables for design of sheet metal forming process.

Forming Method to Manufacture a Doubly Curved General Quadrilateral Sheet Metal Using the Incremental Roll Forming Process (점진적 롤 성형 공정을 이용한 이중 곡률을 갖는 일반적인 사각형 시편의 성형 방법)

  • Yoon S.J.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.978-981
    • /
    • 2005
  • In order to manufacture a doubly curved sheet metal effectively, a flexible incremental roll forming process has been developed by adopting the advantages of the incremental forming process and the roll forming process by combining inherent flexibility of the incremental forming process and continuous deformation of the roll forming process. The forming method has been further enhanced to form general quadrilateral blanks (including a square, a rectangle, a symmetrical trapezoid and an asymmetrical trapezoid, etc.) into doubly curved shapes by controlling the forming paths developed by various experiments.

  • PDF

Electromagnetic Forming Process Analysis Based on Coupled Simulations of Electromagnetic Analysis and Structural Analysis

  • Lee, Man Gi;Lee, Seung Hwan;Kim, Sunwoo;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.215-221
    • /
    • 2016
  • We conducted a phased electromagnetic forming process analysis (EFPA) over time through a coupling of electromagnetic analysis and structural analysis. The analysis is conducted through a direct linkage between electromagnetic analysis and structural analysis. The analysis process is repeated until the electric current is completely discharged by a formed coil. We calculate the forming force that affects the workpiece using MAXWELL, a commercial electromagnetic finite element analysis program. Then, we simulate plastic behavior by using the calculated forming force data as the forming force input to ANSYS, a commercial structure finite element analysis program. We calculate the forming force data by using the model shape in MAXWELL, a commercial electromagnetic finite element analysis program. We repeat the process until the current is fully discharged by the formed coil. Our results can be used to reduce the error in data transformation with a reduced number of data transformations, because the proposed approach directly links the electromagnetic analysis and the structural analysis after removing the step of the numerical analysis of a graph describing the forming force, unlike the existing electromagnetic forming process. Second, it is possible to simulate a more realistic forming force by keeping a certain distance between nodes using the re-mesh function during the repeated analysis until the current is completely discharged by the formed coil, based on the MAXWELL results. We compare and review the results of the EFPA using the peak value of the forming force that acts on the workpiece (which is the existing analysis method), and the proposed phased EFPA over time approach.

Development of Rotary Transfer Forming Device for Process Reduction in Forming (프레스 공정 단축을 위한 회전식 트랜스퍼 성형장치 개발)

  • Kim, Seung-Gi;Youn, Jae-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.413-420
    • /
    • 2014
  • Although the transfer forming process has various advantages, it is also inefficient for the use of multiple press machines, especially for small part sizes. In this study, a new forming process was proposed to use multiple tandem dies in a single press machine. A rotary transfer forming device was developed to combine the advantages of the progressive and transfer forming process. In this study, a detailed forming process using this device was analyzed, and the device was designed to perform four series of tandem forming processes in a single press. In order to analyze the feasibility of this forming process, simple forming dies were made. As a result, the position accuracy was 4 arcsec, and the forming speed reached up to 20 strokes per minute. It is thought that this rotary transfer forming device can help to save initial setup costs through the more efficient use of space in a press machine.

Sectional forming analysis by membrane finite elements considering bending effects (굽힘효과를 고려한 박막 유한요소에 의한 단면 성형해석)

  • Kim, Jun-Bo;Lee, Gwang-Byeong;Keum, Yeong-Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.493-503
    • /
    • 1998
  • The sectional forming analysis considering bending effects from the geometrically deformed shape of two linear membrane finite elements(called super element) was performed under plane strain assumption for analyzing forming processes of an arbitrarily shaped draw-die. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the changes in the interior angle at the middle node of super element, and are agumented to the membrane stretch forces. In order to verify the validity of the bending formulation, the simulation results for the stretch, draw, and bend sections were compared with membrane analysis results and measurements.

Mechanical and microstructural characteristics of a high-strength boron-alloyed steel for hot press forming (고온성형 위한 고강도보론강의 기계적 특성 및 마이크로구조 연구)

  • Lee, Jong-Shin;Chae, Myoung-Su;Park, Chun-Dal;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1355-1360
    • /
    • 2007
  • The use of high strength steels are gradually increasing to reduce the weight of automobile to improve the environmental problems and collision safety. To encounter the traditional disadvantages of high strength steels like as a poor formability and high springback, hot press forming has been developed. By this method, the strength of steel sheet is increased about three times of original one through die quenching process. In order to the design of hot press forming tools by using numerical simulation, the knowledge of mechanical and microstructural characteristics are required. This study show the mechanical and microstructural characteristics of a high strength boron-alloyed steel according to the various quenching conditions.

  • PDF

Development of the roll forming process for the bumper beam of high strength steel (고강도강 범퍼 빔 롤 성형공정 개발)

  • Roh, Hyung-Ju;Kim, Kwang-Heui
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.32-36
    • /
    • 2008
  • Roll forming process for the bumper beam of high strength steel is developed by an experimental method. The size of the bumper beam is reduced to 1/1.8 to save development time and cost. The developed forming rolls are installed in the small three-stage roll forming machine and roll forming experiments are carried out. It is found that the experimental method using small forming machine is effective in developing roll forming process for the bumper beam of high strength steel.

  • PDF