• 제목/요약/키워드: Mechanical forcing

검색결과 106건 처리시간 0.025초

Experimental dynamic performance of an Aluminium-MRE shallow shell

  • Zhang, Jiawei;Yildirim, Tanju;Neupane, Guru Prakash;Tao, Yuechuan;Bingnong, Jiang;Li, Weihua
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.57-64
    • /
    • 2020
  • The nonlinear dynamics of a directly forced clamped-clamped-free-free magneto-rheological elastomer (MRE) sandwich shell has been experimentally investigated. Experiments have been conducted on an aluminium shallow shell (shell A) and an MRE-aluminium sandwich shallow shell with single curvature (shell B). An electrodynamic shaker has been used to directly force shells A and B in the vicinity of their fundamental resonance frequency; a laser displacement sensor has been used to measure the vibration amplitude to construct the frequency-response curves. It was observed that for an aluminium shell (shell A), that at small forcing amplitudes, a weak softening-type nonlinear behaviour was observed, however, at higher forcing amplitudes the nonlinear dynamical behaviour shifted and a strong hardening-type response occurred. For the MRE shell (shell B), the effect of forcing amplitude showed softening at low magnetic fields and hardening for medium magnetic fields; it was also observed the mono-curved MRE sandwich shell changed dynamics to quasiperiodic displacement at some frequencies, from a periodic displacement. The presence of a magnetic field, initial curvature, and forcing amplitude has significant qualitative and quantitative effects on the nonlinear dynamical response of a mono curved MRE sandwich shell.

Use of Chaos in a Lyapunov Dynamic Game

  • J. Skowronski;W. J. Grantham;Lee, B.
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1714-1724
    • /
    • 2003
  • Feedback strategies of a qualitative competitive game between two players can be designed such as to influence parameters of a mechanical system to induce chaotic behavior. The purpose is to reduce the options and effects of the opponent's strategy. We show it on a case with dynamics specified by a nonautonomous Duffing equation with the players represented by damping and external forcing, respectively. It seems however that the conclusions can be made valid generally.

미세노즐을 통한 액적형성에 관한 수치적 연구 (Numerical Study on Drop Formation Through a Micro Nozzle)

  • 김성일;손기헌
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.205-213
    • /
    • 2005
  • The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satellite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation.

밀도 성층 유동 해석을 위한 가상 경계법 (An Immersed Boundary Method for Simulation of Density-Stratified Flows)

  • 윤동혁;양경수
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.940-947
    • /
    • 2005
  • An immersed boundary method for simulation of density-stratified flows has been developed and applied to computation of viscous flows past three different types of obstacle under table density stratification, namely laminar flows past a vertical barrier, a cosine hill, and a sphere, respectively. Density forcing is introduced on the body surface or inside the body. Significant changes in flow characteristics are observed depending on Fr. The numerical results are in good agreement with other authors' experimental and numerical results currently available, and shed light on computation of density-stratified flows in complex geometries.

An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries

  • Kim, Jungwoo;Park, Haecheon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.1026-1035
    • /
    • 2004
  • An immersed boundary method for solving the Navier-Stokes and thermal energy equations is developed to compute the heat transfer over or inside the complex geometries in the Cartesian or cylindrical coordinates by introducing the momentum forcing, mass source/sink, and heat source/sink. The present method is based on the finite volume approach on a staggered mesh together with a fractional step method. The method of applying the momentum forcing and mass source/sink to satisfy the no-slip condition on the body surface is explained in detail in Kim, Kim and Choi (2001, Journal of Computational Physics). In this paper, the heat source/sink is introduced on the body surface or inside the body to satisfy the iso-thermal or iso-heat-flux condition on the immersed boundary. The present method is applied to three different problems : forced convection around a circular cylinder, mixed convection around a pair of circular cylinders, and forced convection around a main cylinder with a secondary small cylinder. The results show good agreements with those obtained by previous experiments and numerical simulations, verifying the accuracy of the present method.

A New Approach for the Analysis Solution of Dynamic Systems Containing Fractional Derivative

  • Hong Dong-Pyo;Kim Young-Moon;Wang Ji Zeng
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.658-667
    • /
    • 2006
  • Fractional derivative models, which are used to describe the viscoelastic behavior of material, have received considerable attention. Thus it is necessary to put forward the analysis solutions of dynamic systems containing a fractional derivative. Although previously reported such kind of fractional calculus-based constitutive models, it only handles the particularity of rational number in part, has great limitation by reason of only handling with particular rational number field. Simultaneously, the former study has great unreliability by reason of using the complementary error function which can't ensure uniform real number. In this paper, a new approach is proposed for an analytical scheme for dynamic system of a spring-mass-damper system of single-degree of freedom under general forcing conditions, whose damping is described by a fractional derivative of the order $0<{\alpha}<1$ which can be both irrational number and rational number. The new approach combines the fractional Green's function and Laplace transform of fractional derivative. Analytical examples of dynamic system under general forcing conditions obtained by means of this approach verify the feasibility very well with much higher reliability and universality.

타워 관측 자료를 이용한 연안 대기 경계층 내 바람 자원의 연직 변동 특성 (Characteristics of Vertical Variation of Wind Resources in Planetary Boundary Layer in Coastal Area using Tall Tower Observation)

  • 유정우;이화운;이순환;김동혁
    • 한국대기환경학회지
    • /
    • 제28권6호
    • /
    • pp.632-643
    • /
    • 2012
  • Analysis of wind resources in Planetary Boundary Layer (PBL) using long term observation of tall tower located near coast line of the Korean Peninsula were carried out. The data observed at Pohang, Gunsan and Jinhae are wind, temperature and relative humidity with 10 minute interval for one year from 1 October 2010. Vertical turbulence intensity and its deviation at Pohang site is smaller than those of other sites, and momentum flux estimated at 6 vertical layers tend to show small difference in Pohang site in comparison with other sites. The change of friction velocity with atmospheric stability in Pohang is also not so great. These analysis indicate the mechanical forcing due to geographical element of upwind side is more predominant than thermal forcing. On the other hand, wind resources at Gunsan and Jinhae are mainly controlled by thermal forcing.

Electrical Quadruple Layer under the AC Electric Field

  • Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.167-176
    • /
    • 2006
  • In this paper we show that solutions of the nonlinear Nernst-Planck equation possesses the quadruple-layer structure near the interface when the electrolyte receives a high frequency forcing such as a high-frequency alternating current. Very near to the interface wall, the well-known, classical Stern layer exists. Near to the Stern layer we have the secondly thin layer (to be called inner layer in this paper) where the ion concentrations behave under the same frequency as the external forcing. However, in this layer, the positive and negative ion concentrations develop with the time phase 180-degree different from each other. Next to this second layer, we have the third layer (called middle layer) in which two ion concentrations change with the time period double the forcing, and both concentrations behave in the same time phase. In the outermost layer, i.e. the forth layer, (called outer layer) the ion concentrations show the same-phase development as the third one but decaying very slowly in time. Our assertion is mostly based on the 1-D numerical simulation for the Nernst-Planck equation under a high frequency AC field assuming that the quadruple layer is very thin compared with the length scale representative of the bulk region.

  • PDF

주기적으로 회전진동하는 원주 후류의 공진특성에 관한 연구 (Lock-on Characteristics of Wake Behind a Rotationally Oscillating Circular Cylinder)

  • 이정엽;이상준
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.895-902
    • /
    • 2005
  • Lock-on characteristics of flow around a circular cylinder oscillating rotationally with a relatively high forcing frequency have been investigated experimentally. Dominant governing parameters are Reynolds number (Re), angular amplitude of oscillation (${\theta}_A$), and frequency ratio $F_R=f_f/f_n,\;where\;f_f$ is a forcing frequency and $f_n$ is a natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\pi}/90{\leq}{\theta_A}{\leq}{\pi}/3,\;and\;F_R=1.0$. The effect of this active flow control technique on the lock-on flow characteristics of the cylinder wake was evaluated with wake velocity measurements and spectral analysis of hot-wire signals. The rotational oscillation modifies the flow structure of near wake significantly. The lock-on phenomenon always occurs at $F_R=1.0$, regardless of the angular amplitude ${\theta}_A$. In addition, when the angular amplitude is less than a certain value, the lock-on characteristics appear only at $F_R=1.0$,. The range of lock-on phenomena expands and vortex formation length is decreased, as the angular amplitude increases. The rotational oscillation create a small-scale vortex structure in the region just near the cylinder surface. At ${\theta}_A=60^{\circ}$, the drag coefficient was reduced about $43.7\%$ at maximum.