• Title/Summary/Keyword: Mechanical fastener

Search Result 43, Processing Time 0.021 seconds

Application of Weight Function Method to Elliptical Arc Through Cracks at Mechanical Fastener Holes (기계적 체결홀에 존재하는 타원호형 관통균열에 대한 가중함수법의 적용)

  • Heo, Sung-Pil;Yang, Won-Ho;Chung, Ki-Hyun;Hyun, Cheol-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.304-310
    • /
    • 2001
  • Cracks at mechanical fastener holes usually nucleate as elliptical comer cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. In this study mode I, II and III stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by applying weight function method. The weight function method for two dimensional mixed-mode problem is extended to three dimensional one and it is verified.

  • PDF

Stress Intensity Factor Analysis of Elliptical Arc Through Cracks at Mechanical Fastener Holes by Weight Function Method ( I ) - Development of Weight Function Method - (가중함수법에 의한 기계적 체결홀에 존재하는 타원호형 관통균열의 음력확대계수 해석 ( I ) - 가중함수법의 전개 -)

  • Heo, Seong-Pil;Yang, Won-Ho;Hyeon, Cheol-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1659-1670
    • /
    • 2001
  • It has been reported that cracks at mechanical fastener holes usually nucleate as elliptical corner cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. The weight function method is an efficient technique to calculate the stress intensity factors fur elliptical cracks using uncracked stress field. In this study the weight function method for three dimensional mixed-mode problem applied to elliptical comer cracks Is modified for elliptical arc through cracks and the stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by the weight function method. This study consists of two parts and in part I , the weight function method for elliptical arc through cracks is developed and verified.

Stress Intensity Factor Analysis of Elliptical Arc Through Cracks at Mechanical Fastener Holes by Weight Function Method (II) - Mixed-Mode Stress Intensity Factor Analysis - (가중함수법에 의한 기계적 체결홀에 존재하는 타원호형: 관통균열의 음력확대계수 해석 (II) - 혼합모드 음력확대계수 해석 -)

  • Heo, Seong-Pil;Yang, Won-Ho;Ryu, Myeong-Hae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1671-1677
    • /
    • 2001
  • Cracks at mechanical fastener holes usually nucleate as elliptical comer cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks. The weight function method for elliptical arc through cracks at mechanical fastener holes has been developed and verified in the part I of this study. In part H, applying the weight function method, the effects of the amount of clearance on the mixed-mode stress intensity (actors are investigated and the change of crack shape is predicted from the analysis for various crack shapes. The stress intensity factors leer inclined crack are analyzed and critical angle at which mode I stress intensity factor becomes maximum is determined.

Fatigue Crack Retardation by Concurrent Cold-Expansion and Ring-indentation (홀확장과 링압인 동시적용에 의한 피로균열지연)

  • Yu, Jin-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.305-316
    • /
    • 1997
  • A more efficient method for obtaining the fatigue life enhancement of a structure member with fastener holes is described. It is based on the combined process of cold-expansion and ring-indentation. Residual stresses were induced onto premachined holes using ring-indentation process near the fastener hole combined with cold-expansion. And residual stresses at the vicinity of a hole were evaluated using a fracture mechanics approach. The compressive residual stresses were larger using the combined process than is in the case of simple cold-expansion. Fatigue testing of aluminum specimens showed that the fatigue crack growth retardation emanating from a circular hole was greater for the combined process than for a simple cold-expansion alone.

Seoul National University of Science and Technology (칼라 나사 검사를 위한 표면 영역 자동 검출)

  • Song, Tae-Hoon;Ha, Jong-Eun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.107-112
    • /
    • 2016
  • Fastener is a very important component that is used in various areas in industry. Recently, various color fasteners are introduced. According to this, online inspection is required in this area. In this paper, an algorithm for the automatic extraction of the surface of color fastener using color information and dynamic programming is presented. The outer boundary of fastener is found using the difference of color that enables robust processing. The inner boundary of fastener is found by dynamic programming that uses the difference of brightness value within fixed area after converting image to polar coordinate. Experiments are done using the same parameters.

Finite Element Analysis of Re-Cold Expansion in Order to Improve the Fatigue Life of Fastener Hole that has been Cold Expanded Before (홀확장법을 적용한 체결홀의 피로수명 개선을 위한 재 홀확장 효과에 대한 유한요소 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Cho, Myoung-Rea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1110-1115
    • /
    • 2006
  • Cold expansion of fastener holes has been successfully used for many years to impart beneficial compressive residual stresses. Beneficial compressive residual stress of fastener hole that has been cold expanded before is reduced by using of materials for a long time. As a result, fatigue life of material is reduced. So, compressive residual stresses of material have to regenerate by re-cold expansion method. In this paper, it was carried out a finite element analysis about variation of residual stress due to tensile stress and residual stress distribution that was regenerated by re-cold expansion method in the fastener hole. Here, a diversity tensile stress was used. Also, it was performed a finite element analysis according to cold expansion rate of re cold expansion in order to obtain a beneficial compressive residual stress.

Analysis for the Residual Stress by Cold Expansion Method and Interference Fit (흘확장법과 억지끼워맞춤에 의한 잔류응력 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1615-1622
    • /
    • 2002
  • The purpose of this study is comparing cold expansion method with interference fit. Cold expansion method and interference fit of fastener hole is using in the aerospace industry. These treatment lead to an improvement of fatigue life to the compressive residual stresses developed on the hole surface. But Research is nothing to about difference effect of between cold expansion method and interference fit. So, this paper, it is shown that Comparing cold expansion method with interference fit using the finite element method. It is further shown that residual stress distribution according to plate thickness and clamping force.

A analysis on the mechanical joint of composite laminate (복합재료 적층판의 기계적 체결부 해석)

  • Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.12-17
    • /
    • 2011
  • This paper gives a review of finite element model for the analysis of fastening as practical points of view. Different mechanical properties of plate-fastener systems are analyzed. Calculations of the system properties are described as well as the technique of their application in model. Analysis has been performed for calculating the load distribution in multi-joint and the results are compared using the several models. The effects of fastener-hole clearance on the load distribution in multifastener joints are presented. And the stress analysis method have been reviewed for failure analysis of mechanical joint of composite laminate.

The Flexible Characteristic of Reversible and Robust Nanohair Fastener

  • Park, Seung-Ho;Yoon, Young-Seok;Lee, Dong-Woo;Lee, Dong-Ik;You, Kyoung-Hwan;Pang, Chang-Hyun;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.432-432
    • /
    • 2011
  • Dry adhesion caused by Nanoscale contact comes up to important scientific issue. Herein, we introduce bendable nanohairy locking fastener system with high shear strength and mechanically flexible backing. The polymeric patches like velcro are composed of an array of straight nanohairs with 100 nm diameter and $1{\mu}m$ height. To fabricate high aspect vertical nanohairs, we used UV molding method with appropriately flexible and rigid polyurethane acrylate material on PET substrate. Two identical nanohairy patches are easily merged and locked each other induced by van der Waals force. Because nanohairs can be arrayed with high density ${\sim}4{\times}10^8/cm^2$, we can obtain high shear adhesion force on flat surface (~22 N/$cm^2$). Furthermore, we can obtian nanohairy locking system with maximum shear adhesion ~48 N/$cm^2$ of curved surface due to flexibility of PET substrate. We confirm the tendency that shear adhesion force increases, as radius of curvature increases.

  • PDF

Thermal Deformation Analysis of Exhaust Manifold for Turbo Diesel Engine in Consideration of Flange Design (터보 디젤 엔진용 배기매니폴드의 열변형 해석)

  • Kim, Beom-Keun;Lee, Eun-Hyun;Choi, Bok-Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.338-343
    • /
    • 2007
  • Thermal deformation of cast iron exhaust manifold for turbo diesel engine is investigated by finite element analysis (FEA). The FE model included the temperature dependent material properties as well as the interactions between exhaust manifold, cylinder head and fasteners. It also considers the sliding behavior of the flanges of exhaust manifold on cylinder head when either expansion or contraction of the exhaust manifold exceeds the fastener pretension. The result of analysis revealed that remarkable thermal deformation along the longitudinal direction. Compressive plastic deformation at high temperature remained tensile stress in manifold and resulted in longitudinal contraction at ambient temperature. The amount of contraction at each fastener position was predicted and compared with experimental results. Analysis results revealed that the model predicted deformation qualitatively, but more elaborated cyclic hardening behavior would be necessary to predict the deformation quantitatively.