• Title/Summary/Keyword: Mechanical excavation method

Search Result 91, Processing Time 0.026 seconds

Study on Q-value prediction ahead of tunnel excavation face using recurrent neural network (순환인공신경망을 활용한 터널굴착면 전방 Q값 예측에 관한 연구)

  • Hong, Chang-Ho;Kim, Jin;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.239-248
    • /
    • 2020
  • Exact rock classification helps suitable support patterns to be installed. Face mapping is usually conducted to classify the rock mass using RMR (Rock Mass Ration) or Q values. There have been several attempts to predict the grade of rock mass using mechanical data of jumbo drills or probe drills and photographs of excavation surfaces by using deep learning. However, they took long time, or had a limitation that it is impossible to grasp the rock grade in ahead of the tunnel surface. In this study, a method to predict the Q value ahead of excavation surface is developed using recurrent neural network (RNN) technique and it is compared with the Q values from face mapping for verification. Among Q values from over 4,600 tunnel faces, 70% of data was used for learning, and the rests were used for verification. Repeated learnings were performed in different number of learning and number of previous excavation surfaces utilized for learning. The coincidence between the predicted and actual Q values was compared with the root mean square error (RMSE). RMSE value from 600 times repeated learning with 2 prior excavation faces gives a lowest values. The results from this study can vary with the input data sets, the results can help to understand how the past ground conditions affect the future ground conditions and to predict the Q value ahead of the tunnel excavation face.

A Numerical Study on the Behavior of Steel Pipes in Umbrella Arch Method (Umbrella Arch 공법 적용시 강관의 거동에 관한 수치해석적 연구)

  • 차민웅;이승도;문현구
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • The effectiveness of UAM is generally accepted, but there has not been much rigorous study on UAM and its mechanical support mechanism is yet to be established. Also, most of UAM installations depend on empirical judgement rather than on engineering knowledge. In this study, an attempt to confirm the support effects and to understand the support mechanism of UAM has been made by analyzing the mechanical behavior of umbrella pipes installed in various ground conditions. The effects of overburden thickness, pipe size, overlap length and the placement of steel arch are studied using a three-dimensional finite element method. From the numerical parametric study, the support mechanism of UAM has been confirmed by analyzing the structural forces in the umbrella pipes due to the excavation.

An Introduction to the DECOVALEX-2019 Task G: EDZ Evolution - Reliability, Feasibility, and Significance of Measurements of Conductivity and Transmissivity of the Rock Mass (DECOVALEX-2019 Task G 소개: EDZ Evolution - 굴착손상영역 평가를 위한 수리전도도 및 투수량계수 측정의 신뢰도, 적합성 및 중요성)

  • Kwon, Saeha;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.306-319
    • /
    • 2020
  • Characterizations of Excavation Damage Zone (EDZ), which is hydro-mechanical degrading the host rock, are the important issues on the geological repository for the spent nuclear fuel. In the DECOVALEX 2019 project, Task G aimed to model the fractured rock numerically, describe the hydro-mechanical behavior of EDZ, and predict the change of the hydraulic factor during the lifetime of the geological repository. Task G prepared two-dimensional fractured rock model to compare the characteristics of each simulation tools in Work Package 1, validated the extended three-dimensional model using the TAS04 in-situ interference tests from Äspö Hard Rock Laboratory in Work Package 2, and applied the thermal and glacial loads to monitor the long-term hydro-mechanical response on the fractured rock in Work Package 3. Each modelling team adopted both Finite Element Method (FEM) and Discrete Element Method (DEM) to simulate the hydro-mechanical behavior of the fracture rock, and added the various approaches to describe the EDZ and fracture geometry which are appropriate to each simulation method. Therefore, this research can introduce a variety of numerical approaches and considerations to model the geological repository for the spent nuclear fuel in the crystalline fractured rock.

The prediction of deformation according to tunnel excavation in weathered granite (화강 풍화암지반의 터널굴착에 따른 변형예측)

  • Cha, Bong-Geun;Kim, Young-Su;Kwo, Tae-Soon;Kim, Sung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.329-340
    • /
    • 2010
  • Mechanical behavior of underground cavity construction such as tunnel is very difficult to estimate due to complexity and uncertainty of ground. Prediction of behavior according to excavation of tunnel mainly uses method utilized of model test or numerical analysis. But scale model test is difficult to reappear field condition, numerical analysis is also very hard to seek choice of suitable constituent model and input data. To solve this problem, this paper forecasted the deformation of tunnel that applied to information of crown settlement and convergence, RMR in weathered granite by using the regression analysis. The result of the analysis shows that the crown settlement according to excavation occurs approximately 70~80% of total displacements within about 20 days. As a result of the prediction of crown settlement and convergence, an exponential function becomes more accurate at measurements than an algebraic function. Also this paper got a correlation in comparison of RMR and displacements of 6 sections.

A Case Study of the New Center-Cut Method in Tunnel : SAV-Cut(Stage Advance V-Cut) (터널 심발발파공법 SAV-Cut(Stage Advance V-Cut)의 특징 및 현장적용 사례 연구)

  • Kim, Dong-Hyun;Lee, Sang-Pil;Lee, Hun-Yeon;Lee, Tae-Ro;Jeon, Seok-Won
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.31-43
    • /
    • 2007
  • In most tunnel constructions in South Korea, blasting has been widely used as an excavation method. In tunnel blasting, the center-cut to induce first free surface is very important for enhancing excavation efficiency and reducing vibration caused by exploding. This paper introduces new center-cut method named SAV-cut (Stage Advance V-cut) developed on the concept of V-cut. Significant features of SAV-cut are the center hole and stepwise ignition. Many field tests and numerical analysis were carried out to analyze the mechanical behavior and blasting vibration. From the results, the newly developed SAV-cut was proved as an effective center-cut method for both increasing blasting efficiency and decreasing blasting vibration.

Development of the Flexible Observation System for a Virtual Reality Excavator Using the Head Tracking System (헤드 트래킹 시스템을 이용한 가상 굴삭기의 편의 관측 시스템 개발)

  • Le, Q.H.;Jeong, Y.M.;Nguyen, C.T.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.27-33
    • /
    • 2015
  • Excavators are versatile earthmoving equipment that are used in civil engineering, hydraulic engineering, grading and landscaping, pipeline construction and mining. Effective operator training is essential to ensure safe and efficient operating of the machine. The virtual reality excavator based on simulation using conventional large size monitors is limited by the inability to provide a realistic real world training experience. We proposed a flexible observation method with a head tracking system to improve user feeling and sensation when operating a virtual reality excavator. First, an excavation simulator is designed by combining an excavator SimMechanics model and the virtual world. Second, a head mounted display (HMD) device is presented to replace the cumbersome large screens. Moreover, an Inertial Measurement Unit (IMU) sensor is mounted to the HMD for tracking the movement of the operator's head. These signals consequently change the virtual viewpoint of the virtual reality excavator. Simulation results were used to analyze the performance of the proposed system.

An Experimental Study on the Stability of IER according to the Head Connection Method (지주식흙막이의 두부 연결 방법에 따른 안정성에 관한 실험적 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Seo, Min-Su;Kim, Chang-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.45-57
    • /
    • 2016
  • The Inclined Earth Retaining Structure (IER) is the structure using an integrated system of both front supports and inclined back supports to increase the stability for excavation. The IER is a structurally stable temporary excavation method using the back supports restraining the lateral displacement of the front supports as stabilizing piles. The back supports connected to the front supports significantly reduce the earth pressure acting on both the front wall and the front supports by distributing it to the back supports in order to increase the structural stability. In this study, mechanical behaviors of IER according to the head connection type using fixed- or hinge-connection were found by performing numerical analysis and laboratory model tests in the sandy ground. The maximum lateral displacement of fixed-connection was 88% of that of hinge-connection in the numerical analysis. The lateral displacement of fixed-connection was 7% of that of hinge-connection in the laboratory model test results. Furthermore, the earth pressure of the fixed-connection was 67% of that of the hinge-connection in the shear-strain analysis results of the model ground.

Design on the large section of station tunnel under shallow overburden (저토피고 대단면 정거장터널의 설계)

  • Jeong, Yun-Young;Choi, Hae-Joon;Kim, Byung-Ju;Yu, Bong-Won;Kim, Yong-Il;Oh, Sung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.171-182
    • /
    • 2007
  • For minimizing the effect on the focus of civil traffic and environment conditions related to the excavation at the traffic jamming points, an underground station tunnel was planned with 35.5 m in length and bigger area than $200\;m^2$ in sedimentary rock mass. It faced the case that the overburden was just under 13 m. Not based on a pattern design but on the case histories of similar projects and arching effect, the design of large section tunnel under shallow overburden was investigated on three design subjects which are shape effect on the section area, application method of support pressure, and supporting and tunnel safety. According to the mechanical effect from section shape, a basic design and a preliminary design was obtained, and then supporting method of large section was planned by the supporting of NATM and a pipe roof method for subsidence prevention and mechanical stability. From the comparative study between both designs, it was found that the basic design was suitable and acceptable for the steel alignment of tunnel lining, safety and the design parameter restricted by the limit considered as partition of the excavation facilities. Through the analysis result of preliminary design showing the mechanical stability without stress concentration in tunnel arch level, it also was induced that shape effect of the large section area and yielding load obtained from deformation zone in the surrounding rock mass of tunnel have to be considered as major topics for the further development of design technique on the large section tunnel.

  • PDF

A Study on the Mechanical Characteristics of Tunnel Structures and Ground Behavior by Synthetic Analysis Method with Tunnel Monitoring Results used (터널의 계측결과 종합분석에 의한 지반의 거동 및 터널 구조체의 역학적 특성 연구)

  • Woo, Jong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.115-124
    • /
    • 2003
  • In this study, the relationships between the displacement and stress of the tunnel using various analysis methods were compared with monitoring results carried out during construction and maintenance monitoring. The behavior of tunnel were measured in the subway tunnel passing comparative soft the weathering and analyzed both security and mechanical characteristics of the tunnel lining. With the results of simplified monitoring observed in top heading and bench excavation tunnel, it is confirmed that the crown settlement is larger than the surface settlement. it is interesting to note that the crown settlement and the crown shotcrete lining stress are widely used monitoring items for the back analysis. It is analyzed that the residual water pressure applied in the drainage type tunnel is reasonable.

Developement of back-analysis model for determining the mechanical properties of jointed rock (절리암반의 역학적 특성 분석을 위한 역해석 모델 개발)

  • Cho, Tae-Chin
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.19-29
    • /
    • 1996
  • Back analysis model, capable of calculating the mechanical properties and the in-situ stresses of jointed rock mass, was developed based on the inverse method using a continuum theory. Constitutive equation for the behavior of jointed rock contains two unknown parameters, elastic modulus of intact rock and stiffness of joint, hence algorithm which determines both parameters simultaneously cannot be established. To avoid algebraic difficulties elastic modulus of intact rock was assumed to be known, since the representative value of which would be quite easily determined. Then, the ratio ($\beta$) of joint stiffness to elastic modulus of intact rock was assigned and back analysis for the behavior of jointed rock was carried-out. The value $\beta$ was repeatedly modified until the elastic modulus from back analysis became very comparable to the predetermined value. The joint stiffness could be calculated by multipling the ratio $\beta$ to the final result of elastic modulus. Accuracy and reliability of back analysis procedure was successfully testified using a sample model simulating the underground opening in the jointed rock mass. Applicability of back analysis model for the underground excavation in practice was also verified by analyzing the mechanical properties of jointed rock in which underground oil storage cavern were under construction.

  • PDF