• Title/Summary/Keyword: Mechanical damage

Search Result 2,364, Processing Time 0.035 seconds

Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation

  • Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2023
  • Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.

Development of Truck Axle Load Distribution Model using WIM Data (WIM 자료를 활용한 화물차 축하중 분포 모형 개발)

  • Lee, Dong Seok;Oh, Ju Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.821-829
    • /
    • 2006
  • Traffic load comprise primary input to pavement design causing pavement damage. therefore it should be proceeded suitable traffic load distribution modeling for pavement design and analysis. Traffic load have been represented by equivalent single axle loads (ESALs) which convert mixed traffic stream into one value for design purposes. But there are some limit to apply ESALs to other roads because it is empirical value developed as part of the original AASHO(American Association of State Highway Officials) road test. There have been many efforts to solve these problems. Several leading country have implemented M-E(Mechanistic-Empirical) design procedures based on mechanical concept. As a result, they established traffic load quantification method using load distribution model known as Axle Load Spectra. This paper details Axle Load Spectra and presents axle load distribution model based on normal mixture distribution function using truck load data collected by WIM system installed in national highway. Axle load spectra and axle load distribution model presented in this paper could be useful for basic data when making traffic load quantification plan for pavement design, overweight vehicle permit plan and pavement maintenance cost plan.

Sluice Gates Control Monitoring of Oil Pressure-Machine Using FDC Tuning Control Technique (FDC 동조제어기법을 이용한 유압-기계식 수문 제어 모니터링)

  • Heo, Gwanghee;Kim, Chunggil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.337-342
    • /
    • 2010
  • Generally most sluice gates are closed and opened by a mechanical winch, a winch using an oil-pressure, or a winch mixing both. Because of their size and structure, they should be safely operated with more than two pulling devices helping each other. At the moment of their opening and closing, there usually occur some additional loads to the structure which cannot be exactly measurable at the stage of designing. Such additional loads can cause the sluice gate to be unbalanced and make it hard to open and close the gate, and by also overloading a winch, they can inflict a significant damage to the safety of the sluice gate. This paper explains a FDC(Force-Displacement Control) system which simultaneously considered the oil-pressure and displacement in order to evenly distribute the force and make a winch balanced at the opening and closing motion. This FDC system was implemented by means of the PID(Proportional Integral Derivative) function of XG 5000 program. It was experimented on a model of the sluice gate winch with the hydraulic oil pressure cylinder. The experiments showed that the developed FDC system made the winch of hydraulic oil pressure cylinder open and close cooperatively in spite of various external loads. Therefore the FDC system is proven effective when it is applied to a winch of sluice gate.

Stress analysis of high-temperature superconducting wire under electrical/magnetic/bending loads

  • Dongjin Seo;Yunjo Jung;Hong-Gun Kim;Hyung-Seop Shin;Young-Soon Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.19-23
    • /
    • 2023
  • The Second-generation high-temperature superconducting (HTS) Rare-Earth Barium Copper Oxide (REBCO) wire is a composite laminate having a multi-layer structure (8 or more layers). HTS wires will undergo multiple loads including the bending-tension loads during winding, high current density, and high magnetic fields. In particular, the wires are subjected to bending stress and magnetic field stress because HTS wires are wound around a circular bobbin when making a high-field magnetic. Each of the different laminated wires inevitably exhibits damage and fracture behavior of wire due to stress deformation, mismatches in thermal, physical, electrical, and magnetic properties. Therefore, when manufacturing high-field magnets and other applications, it is necessary to calculate the stress-strain experienced by high-temperature superconducting wire to present stable operating conditions in the product's use environment. In this study, the finite element model (FEM) was used to simulate the strain-stress characteristics of the HTS wire under high current density and magnetic field, and bending loads. In addition, the result of obtaining the neutral axis of the wire and the simulation result was compared with the theoretical calculation value and reviewed. As a result of the simulation using COMSOL Multiphysics, when a current of 100 A was applied to the wire, the current value showed the difference of 10-9. The stress received by the wire was 501.9 MPa, which showed a theoretically calculated value of 500 MPa and difference of 0.38% between simulation and theoretical method. In addition, the displacement resulted is 30.0012 ㎛, which is very similar to the theoretically calculated value of 30 ㎛. Later, the amount of bending stress by the circular mandrel was received for each layer and the difference with the theoretically obtained the neutral axis result was compared and reviewed. This result will be used as basic data for manufacturing high-field magnets because it can be expanded and analyzed even in the case of wire with magnetic flux pinning.

A Study on the Field Application of a Small Dynamic Cone Penetration Tester Using Hammer Automatic Strike and Penetration Measurement (해머 타격과 관입량 측정이 자동화된 소형 동적콘관입시험기의 현장 적용성 연구)

  • Hwiyoung Chae ;Soondal Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.5-11
    • /
    • 2023
  • Economic damage is occurring due to landslides and debris flows that occur when the ground artificially created for roads or photovoltaic power generation facilities is weakened by rainfall such as torrential rain. In order to understand the stability of the artificially created ground, it is very important to check the ground information such as the compositional state and mechanical characteristics of the stratum. However, since most of the investigation sites are steep slopes or there are no access roads, it is not easy to enter the drilling equipment commonly used to check ground information and perform standard penetration tests. In this study, a dynamic cone penetration test (DCP) device using a miniaturized auger drilling equipment and an automatic drop device was developed to check the cone resistance value and the dynamic cone penetration test value and analyze the correlation with the standard penetration test value to confirm its applicability at the mountain solar power generation site. As a result, the cone resistance value is qd = 0.46 N and the dynamic cone penetration test value is Nd = 1.58 N, confirming a value similar to the results of existing researchers to secure its reliability.

Experimental Study on the Adhesion and Performance Evaluation of Joints for Modified Polyethylene Coated Steel Pipes (개질 폴리에틸렌 코팅 강관의 부착 및 체결부 성능 평가 연구)

  • Myung Kue Lee;Sanghwan Cho;Min Ook Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.238-245
    • /
    • 2024
  • In this study, as part of the development of a monitoring system for the efficient maintenance of steel pipes, an experimental study was conducted to evaluate the performance of steel pipes treated with modified polyethylene coating. In the case of the conventional mechanical pre-coating method, there was a deterioration in polyethylene adhesion during expansion testing, which led to the application of a chemical pre-treatment process using a calcium-mixed phosphate zinc film to resolve this issue. SEM and EDX analyses showed that the densest structure was observed at a Zn/Ca ratio of 1.0, and improved heat resistance compared to the conventional method was confirmed. Additionally, to prevent coating detachment during expansion, an evaluation of adhesion and elongation was conducted on steel pipes with modified polyethylene coating, incorporating materials such as elastomers based on maleic anhydride grafting, metal oxides, blocking agents, and slip agents. Experimental results showed that the specimen (S4) containing all modified materials exhibited more than a 25% performance improvement compared to the specimen (S2) containing only metal oxides. Lastly, the development and performance evaluation of wedge-shaped socketing and pressing wheels, which are part of the pipe fixing accessories, were conducted to prevent surface coating damage on the completed pipes.

Development of Porcine Pericardial Heterograft for Clinical Application (Tensile Strength-thickness) (돼지의 심낭을 이용한 이종이식 보철편의 개발 (장력-두께간의 구조적 특성))

  • Kim, Kwan-Chang;Lee, Cheul;Choi, Chang-Hue;Lee, Chang-Ha;Oh, Sam-Sae;Park, Seong-Sik;Kim, Kyung-Hwan;Kim, Woong-Han;Kim, Yong-Jin
    • Journal of Chest Surgery
    • /
    • v.41 no.2
    • /
    • pp.170-176
    • /
    • 2008
  • Background: Bioprosthetic devices for treating cardiovascular diseases and defects may provide alternatives to autologous and homograft tissue. We evaluated the mechanical and physical conditions of a porcine pericardial bioprosthesis treated with Glutaraldehyde (GA), Ethanol, or Sodium dodecylsulfate (SDS) before implantation. Material and Method: 1) Thirty square-shaped pieces of porcine pericardium were fixed in 0.625%, 1.5% or 3% GA solution. 2) The tensile strength and thickness of these and other bioprosthesis, including fresh porcine pericardium, fresh human pericardium, and commercially produced heterografts, were measured. 3) The tensile strength and thickness of the six treated groups (GA-Ethanol, Ethanol-GA, SDS only, SDS-GA, Ethanol-SDS-GA and SDS-Ethanol-GA) were measured. Result: 1) Porcine pericardium fixed in 0.625% GA the thinnest and had the lowest tensile strength, with thickness and tensile strength increasing with the concentration of GA solution. The relationship between tensile strength and thickness of porcine pericardium increased at thicknesses greater than 0.1mm (correlation-coefficient 0.514, 0<0.001). 2) There were no differences in tensile strength or thickness between commercially-produced heterografts. 3) Treatment of GA, ethanol, or SDS minimally influenced thickness and tensile strength of porcine pericardium, except for SDS alone. Conclusion: Porcine pericardial bioprosthesis greater than 0.1 mm thick provide better handling and advantageous tensile strength. GA fixation did not cause physical or mechanical damage during anticalcification or decellularization treatment, but combining SDS-ethanol pre-treatment and GA fixation provided the best tensile strength and thickness.

Possibility of Using Non-selective Herbicides as Desiccants for Improving Soybean Harvest Efficiency (콩 수확 효율 증진을 위한 건조제로서 비선택성 제초제의 활용 가능성)

  • Won, Ok Jae;Hong, Seo yeon;Suh, Eun Ji;Park, Jae-Sung;Lee, Hong Seok;Park, Jin-Ki;Ryu, Jong-Soo;Han, Won-Young;Han, Kil Su;Song, Duk Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.358-364
    • /
    • 2021
  • This study was conducted to select a desiccant and determine its concentration for safe usage to improve the harvesting efficiency of soybeans. Soybeans were treated with a desiccant (non-selective herbicide) before and after the maturation stage. The drying effect of the desiccant was higher at earlier treatment times than at the maturation stage, but the difference was not statistically significant. The higher efficacy might be related to the drying process of the leaves and stems, with most of the leaves and stems having already been dried by the time of hand harvesting. Desiccant treatments had no adverse effects on soybean yield, weight of 100 grains, seed quality, or seed germination rate compared with the untreated control. Pesticide residue analysis showed minimum residue concentration to be lower than the tolerance level of pesticide residues. In conclusion, it was confirmed that the desiccant was effective in drying soybean, and that there was no damage to the quality of soybean seeds. In addition to the drying effect, the dessicant treatment also facilitates the removal of weeds that interfere with the mechanical harvest and improves harvesting efficiency through the drying of the growth imbalanced individual. The desiccant treatment is expected to shorten the mechanical harvesting time by 1-2 weeks. It is thought that the selection of the proper cultivation period for other crops after soybean cultivation will be more advantageous.

Development of Porcine Pericardial Heterograft for Clinical Application (Microscopic Analysis of Various Fixation Methods) (돼지의 심낭, 판막을 이용한 이종이식 보철편의 개발(고정 방법에 따른 조직학적 분석))

  • Kim, Kwan-Chang;Choi, Chang-Hyu;Lee, Chang-Ha;Lee, Chul;Oh, Sam-Sae;Park, Seong-Sik;Kim, Woong-Han;Kim, Kyung-Hwan;Kim, Yong-Jiin
    • Journal of Chest Surgery
    • /
    • v.41 no.3
    • /
    • pp.295-304
    • /
    • 2008
  • Background: Various experimental trials for the development of bioprosthetic devices are actively underway, secondary to the limited supply of autologous and homograft tissue to treat cardiac diseases. In this study, porcine bioprostheses that were treated with glutaraldehyde (GA), ethanol, or sodium dodecylsulfate (SDS) were examined with light microscopy and transmission electron microscopy for mechanical and physical imperfections before implantation, Material and Method: 1) Porcine pericardium, aortic valve, and pulmonary valve were examined using light microscopy and JEM-100CX II transmission electron microscopy, then compared with human pericardium and commercially produced heterografts. 2) Sections from six treated groups (GA-Ethanol, Ethanol-GA, SDS only, SDS-GA, Ethanol-SDS-GA and SDS-Ethanol-GA) were observed using the same methods. Result: 1) Porcine pericardium was composed of a serosal layer, fibrosa, and epicardial connective tissue. Treatment with GA, ethanol, or SDS had little influence on the collagen skeleton of porcine pericardium, except in the case of SDS pre-treatment. There was no alteration in the collagen skeleton of the porcine pericardium compared to commercially produced heterografts. 2) Porcine aortic valve was composed of lamina fibrosa, lamina spongiosa, and lamina ventricularis. Treatment with GA, ethanol, or SDS had little influence on these three layers and the collagen skeleton of porcine aortic valve, except in the case of SDS pre-treatment. There were no alterations in the three layers or the collagen. skeleton of porcine aortic valve compared to commercially produced heterografts. Conclusion: There was little physical and mechanical damage incurred in porcine bioprosthesis structures during various glutaraldehyde fixation processes combined with anti-calcification or decellularization treatments. However, SDS treatment preceding GA fixation changed the collagen fibers into a slightly condensed form, which degraded during transmission electron micrograph. The optimal methods and conditions for sodium dodecylsulfate (SDS) treatment need to be modified.

The Role of Poly(ADP-ribose) Polymerase-1 in Ventilator-Induced Lung Injury (기계환기로 인한 급성 폐손상에서 poly(ADP-ribose) polymerase-1의 역할)

  • Kim, Je-Hyeong;Yoon, Dae Wui;Hur, Gyu Young;Jung, Ki Hwan;Lee, Sung Yong;Lee, Sang Yeub;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Yoo, Se Hwa;Kang, Kyung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.4
    • /
    • pp.451-463
    • /
    • 2006
  • Background : Reactive oxygen species (ROS) take center stage as executers in ventilator-induced lung injury (VILI). The protein with DNA-damage scanning activity, poly (ADP-ribose) polymerase-1 (PARP1), signals DNA rupture and participates in base-excision repair. Paradoxically,overactivation of PARP1 in response to massive genotoxic injury such as ROS can induce cell death through ${\beta}$ -nicotinamide adenine dinucleotide ($NAD^+$) depletion, resulting in inflammation. The purpose of this study is to investigate the role of PARP1 and the effect of its inhibitor in VILI. Methods : Forty-eight male C57BL/6 mice were divided into sham, lung protective ventilation(LPV), VILI, and PARP1 inhibitor (PJ34)+VILI (PJ34+VILI) groups. Mechanical ventilator setting for the LPV group was $PIP\;15cmH_2O$ + $PEEP\;3cmH_2O$ + RR 90/min + 2 hours. The VILI and PJ34+VILI groups were ventilated on a setting of $PIP\;40cmH_2O$ + $PEEP\;0cmH_2O$ + RR 90/min + 2 hours. As a PARP1 inhibitor for the PJ34+VILI group, 20 mg/Kg of PJ34 was treated intraperitoneally 2 hours before mechanical ventilation. Wet-to-dry weight ratio and acute lung injury (ALI) score were measured to determine the degree of VILI. PARP1 activity was evaluated by using an immunohistochemical method utilizing biotinylated NAD. Myeloperoxidase (MPO) activity and the concentration of inflammatory cytokines such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 were measured in bronchoalveolar lavage fluid (BALF). Results : In the PJ34+VILI group, PJ34 pretreatment significantly reduced the degree of lung injury, compared with the VILI group (p<0.05). The number of cells expressing PARP1 activity was significantly increased in the VILI group, but significantly decreased in the PJ34+VILI group (p=0.001). In BALF, MPO activity, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6 were also significantly lower in the PJ34+VILI group (all, p<0.05). Conclusion : PARP1 overactivation plays a major role in the mechanism of VILI. PARP1 inhibitor prevents VILI, and decreases MPO activity and inflammatory cytokines.