Development of Porcine Pericardial Heterograft for Clinical Application (Microscopic Analysis of Various Fixation Methods)

돼지의 심낭, 판막을 이용한 이종이식 보철편의 개발(고정 방법에 따른 조직학적 분석)

  • Kim, Kwan-Chang (Department of Thoracic and Cardiovascular Surgery, School of Medicine, Ewha Womans University) ;
  • Choi, Chang-Hyu (Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University of Medicine and Science) ;
  • Lee, Chang-Ha (Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital, Sejong Heart Research Institute) ;
  • Lee, Chul (Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital, Sejong Heart Research Institute) ;
  • Oh, Sam-Sae (Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital, Sejong Heart Research Institute) ;
  • Park, Seong-Sik (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Dankook University) ;
  • Kim, Woong-Han (Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Kim, Kyung-Hwan (Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Kim, Yong-Jiin (Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center)
  • 김관창 (이화여자대학교 의학전문대학원 흉부외과학교실) ;
  • 최창휴 (가천의과대학교 길병원 흉부외과학교실) ;
  • 이창하 (부천세종병원 흉부외과, 세종심장연구소) ;
  • 이철 (부천세종병원 흉부외과, 세종심장연구소) ;
  • 오삼세 (부천세종병원 흉부외과, 세종심장연구소) ;
  • 박성식 (단국대학교 의과대학 흉부외과학교실) ;
  • 김웅한 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학연구소, 바이오 이종장기개발사업단) ;
  • 김경환 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학연구소, 바이오 이종장기개발사업단) ;
  • 김용진 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학연구소, 바이오 이종장기개발사업단)
  • Published : 2008.06.05

Abstract

Background: Various experimental trials for the development of bioprosthetic devices are actively underway, secondary to the limited supply of autologous and homograft tissue to treat cardiac diseases. In this study, porcine bioprostheses that were treated with glutaraldehyde (GA), ethanol, or sodium dodecylsulfate (SDS) were examined with light microscopy and transmission electron microscopy for mechanical and physical imperfections before implantation, Material and Method: 1) Porcine pericardium, aortic valve, and pulmonary valve were examined using light microscopy and JEM-100CX II transmission electron microscopy, then compared with human pericardium and commercially produced heterografts. 2) Sections from six treated groups (GA-Ethanol, Ethanol-GA, SDS only, SDS-GA, Ethanol-SDS-GA and SDS-Ethanol-GA) were observed using the same methods. Result: 1) Porcine pericardium was composed of a serosal layer, fibrosa, and epicardial connective tissue. Treatment with GA, ethanol, or SDS had little influence on the collagen skeleton of porcine pericardium, except in the case of SDS pre-treatment. There was no alteration in the collagen skeleton of the porcine pericardium compared to commercially produced heterografts. 2) Porcine aortic valve was composed of lamina fibrosa, lamina spongiosa, and lamina ventricularis. Treatment with GA, ethanol, or SDS had little influence on these three layers and the collagen skeleton of porcine aortic valve, except in the case of SDS pre-treatment. There were no alterations in the three layers or the collagen. skeleton of porcine aortic valve compared to commercially produced heterografts. Conclusion: There was little physical and mechanical damage incurred in porcine bioprosthesis structures during various glutaraldehyde fixation processes combined with anti-calcification or decellularization treatments. However, SDS treatment preceding GA fixation changed the collagen fibers into a slightly condensed form, which degraded during transmission electron micrograph. The optimal methods and conditions for sodium dodecylsulfate (SDS) treatment need to be modified.

배경: 지금까지 심장 및 혈관 등의 결손을 교정하기 위하여 자기 조직이 아닌 다른 보철편의 필요가 증가함에 따라, 그에 따른 다양한 대체제가 연구 개발되고 있으며, 임상에서 실제로 흔히 이용되고 있다. 본 연구는 새로운 조직의 처리방법을 개발하기 위하여 이미 상용화되고 있는 기존의 일부 이종이식 보철편들과, 여러 가지 조건들에서 제조되는 이종조직인 돼지 심낭과 대동맥, 페동맥판막 등의 보철편들의 임상적용 전에 각종 고정, 처리 방법에 따른 이종조직의 조직학적 변성이나 변화의 가능성을, 물리적, 구조적, 기능적 치적의 상태를 분석하기 위하여 광학 현미경 및 전자 현미경 소견을 통하여 알아보고자 하였다. 대상 및 방법: 1) 0.625% glutaraldehyde용액에 고정 전과 고정 후의 돼지 심낭과 대동맥, 폐동맥판막, 사람의 심낭, 그리고 상용화되고 있는 기존의 이종이식 보철편들과 광학 및 전자현미경으로 비교관찰 하였다. 2) 돼지 심낭과 대동맥, 페동맥판막을 0.625% glutaraldehyde 고정 전과 고정 후에 80% Ethanol 처리한 군과, sodium dodecylsulfate (SDS) 을 이용하여 무세포화 처리만 시행한 군, 무세포화과정 후에 0.625% glutaraldehyde 고정한 군, 80% ethanol 처리 후 다시 무세포화과정을 한 후 0.625% glutaraldehyde 고정한 군, 무세포화한 후 다시 ethanol 처리 후 다시 0.625% glutaraldehyde 고정한 군으로 나누어 각각을 광학 및 전자현미경으로 관찰하였다 결과: 1) 돼지 심낭은 장막 층(serosal layer), 섬유층(fibrosa), 심외막 결합조직(epicardial connective tissue)로 이루어져 있었으며, 여러 가지 처치 후에도 모두 콜라겐 섬유는 잘 유지되고 있었다. 하지만 무세포화만 시행하거나 먼저 무세포화 처리한 군의 콜라겐구조는 다른 군에 비해 느슨하게 연결된(loosely condensed) 양상이었다. 기존의 소나 돼지의 심낭으로 만들어진 Shelhign, Biocor, Supple Peri-guard 등의 제품들의 콜라겐 섬유는 비교적 잘 유지되고 있었다. 2) 돼지 대동맥, 폐동맥 판막은 섬유판(lamina fibrosa), 해면질판(lamina spongiosa), 심실판(lamina ventricularis) 세층으로 이루어져 있었으며 이 판막들은 여러 가지 처치 후에도 모두 세층과 콜라겐 섬유는 잘 유지되고 있었다. 하지만 무세포화만 시행하거나 민저 처리한 군은 신낭에서 처럼 콜라겐구조는 다른 군에 비해 약간 느슨하게 연결된(loosely condensed) 양상이었다. 돼지 대동맥판막으로 만들어진 Carpentier Edwards, Medtronics, Shelhigh, Biocor의 다른 제품들도 세 개의 층은 잘 유지되었고 콜라겐도 잘 유지되고 있었다. 결론: 이종이식 돼지심낭과 대동맥 판막, 폐동맥 판막 보철편은 여러 조건하의 고정 방법들에 따라 광학 및 전자 현미경적 구조의 확연한 차이를 보이지 않아, Glutaraldehyde를 이용한 각종 조직 처리과정 중 조직손상에 의한 구조적, 기계적손실은 없는 것으로 생각되며, sodium dodecylsulfate (SDS)을 이용하여 무세포화 처리를 시행한 경우 대부분의 보철편에서 콜라겐 조직의 미세한 변성이나 분해(degradation)가 광학 및 전자현미경에서 관찰되어, 무세포화의 처리방법이나 조건의 적절화가 필요한 것으로 생각되었다.

Keywords

References

  1. Opie JC, Larrieu AJ, Cornell IS. Pericardial substitutes: delayed exploration and findings. Ann Thorac Surg 1987;43: 383-5 https://doi.org/10.1016/S0003-4975(10)62808-1
  2. Carpentier A, Nashef A, Carpentier S, Ahmed A, Goussef N. Technique for prevention of calcification of valvular bioprosthesis. Circulation 1984;70(Suppl I):165-8 https://doi.org/10.1161/01.CIR.70.2.165
  3. Ahn JH, Kim YJ. Investigation of bovine pericardial heterograft (I) -concentration of fixatives and tensile strength-. Korean J Thorac Cardiovasc Surg 1989;22:373-83
  4. Kim KB, Kim YJ, Rho JR, Suh KP. Investigation of bovine pericardial heterograft (II). Korean J Thorac Cardiovasc Surg 1990;23:465-73
  5. Ahn JH, Noh YW, Rhee JH. Pulmonary autograft with right ventricular outflow tract reconstruction in swine model. Korean J Thorac Cardiovasc Surg 1996;29:822-7
  6. Liao K, Frater RWM, LaPietra A, et al. Time-dependent effect of Glutaraldehyde on the tendency to calcify of both autografts and xenografts. Ann Thorac Surg 1995;60:S343-7 https://doi.org/10.1016/0003-4975(95)00286-T
  7. Nimni ME. The cross-linking and structure modification of the collagen matrix in the design of cardiovascular prosthesis. J Card Surg 1988;3:523-33 https://doi.org/10.1111/j.1540-8191.1988.tb00446.x
  8. Webb CL, Benedict JJ, Schoen FJ, Linden LA, Levy RJ. Inhibition of bioprosthetic heart valve calcification with aminodiphosphonate covalently bound to residual aldehyde groups. Ann Thorac Surg 1988;46:309-16 https://doi.org/10.1016/S0003-4975(10)65932-2
  9. Neethling WM, Hodge AJ, Clode P, Glancy R. A multi-step approach in anti-calcification of glutaraldehyde-preserved bovine pericardium. J Cardiovasc Surg (Torino) 2006;47:711-8
  10. Garcia Paez JM, Jorge-Herrero E, Carrera A, et al. Chemical treatment and tissue selection: factors that influence the mechanical behaviour of porcine pericardium. Biomaterials 2001;22:2759-67 https://doi.org/10.1016/S0142-9612(01)00019-9
  11. Stein PD, Riddle JM, Kemp SP, et al. Effect of warfarin on calcification of spontaneously degenerated porcine bioprosthetic valves. J Thorac Cardiovasc Surg 1985;90:119-25
  12. Golomb G, Ezra V. Prevention of bioprosthetic heart valve tissue calcification by charge modification: effects of protamine binding by formaldehyde. J Biomed Mater Res 1991;25:85-98 https://doi.org/10.1002/jbm.820250107
  13. Carpentier SM, Monier MH, Shen M, Carpentier AF. Do donor or recipient species influence calcification of bioprosthetic tissues? Ann Thorac Surg 1995;60:S328-31 https://doi.org/10.1016/0003-4975(95)00244-F
  14. Ahn JH, Han JJ, Park SS. Prevention of calcification in bovine pericardial bioprosthesis. Korean J Thorac Cardiovasc Surg 1998;31:560-6
  15. Meuris B, Verbeken E, Flameng W. Prevention of porcine aortic wall calcification by acellularization: necessity for a non-glutaraldehyde-based fixation treatment. J Heart Valve Dis 2005;14:358-63
  16. Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 2005;79:1072-80 https://doi.org/10.1016/j.athoracsur.2004.06.033
  17. Hirsch D, Drader J, Thomas TJ, Schoen FJ, Levy JT, Levy RJ. Inhibition of calcification of porcine aortic valve cusps with sodium dodecyl sulfate: preincubation and controlled release studies. J Biomed Mater Res 1993;27:1477-84 https://doi.org/10.1002/jbm.820271203
  18. Jastrzebska M, Mroz I, Barwinski B, Zalewska-Rejdak J, Turek A, Cwalina B. Supramolecular structure of human aortic valve and pericardial xenograft material: atomic force microscopy study. J Mater Sci Mater Med 2007;28; [Epub ahead of print]
  19. Jastrzebska M, Wrzalik R, Kocot A, Zalewska-Rejdak J, Cwalina B. Raman spectroscopic study of glutaraldehyde- stabilized collagen and pericardium tissue. J Biomater Sci Polym Ed 2003;14:185-97 https://doi.org/10.1163/156856203321142605
  20. Schoen FJ. Future directions in tissue heart valves: impact of recent insighnd pathologyts from biology a. J Heart Valve Dis 1999;8:350-8
  21. Hiester ED, Sacks MS. Optimal bovine pericardial tissue selection sites. I. Fiber architecture and tissue thickness measurements. J Biomed Mater Res 1998;39:207-14 https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<207::AID-JBM6>3.0.CO;2-T