• Title/Summary/Keyword: Mechanical calibration

Search Result 501, Processing Time 0.03 seconds

A Study on Prediction of Nugget Diameter by Resistance Spot Welding Finite Element Analysis of High Tensile Steel (SGAFC 780) (고장력 강판(SGAFC780)의 저항 점 용접의 유한요소해석을 통한 너깃 직경 예측)

  • Lee, Cheal-Ho;Kim, Won Seop;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.144-150
    • /
    • 2019
  • In this study, resistance spot welding was performed using a high tensile steel plate SGAFC 780. The shear tensile strength, fracture profile, nugget diameter, and simulation were compared according to the conditions. After the nugget diameter calibration, the minimum diameter of welding was more than 4.3mm when the welding current was 8kVA or more. At 9kVA and above 10kVA, the minimum nugget diameter of 4.3mm was satisfied. On the other hand, due to the high current and time, the fly phenomenon occurred and the deep indentation remained. An evaluation of the weldability confirmed that there was an interval that was evaluated as weld failure due to the creep phenomenon, which satisfied the tensile shear strength and minimum nugget diameter. On the other hand, areas that have sufficient load bearing capacity even when drift has occurred were also identified. The simulation results show that the error rate was less than 4.2% when comparing the nugget diameter in the simulation and the experimental results in the appropriate weld zone, and confirmed the reliability of the simulation.

Development of Antifreeze Concentration Control device for Solar Heat Energy System (태양열에너지 시스템용 부동액 농도 제어 장치의 개발)

  • Seo, Choong-Kil;Won, Joung Wun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The gases emitted from internal combustion engines using fossil fuels are causing many social problems, such as environmental pollution, global warming, and adverse health effects on the human body. In recent years, the demand for renewable energy has increased, and government policy support and research and development are also active. In the collecting part of a solar energy system, which is widely used at home, propylene glycol (PG) (anti-freeze), as a heating medium, is mixed with water at a fixed value of 50%, and the heat is transferred to the collecting part at subzero temperatures. On the other hand, when leakage occurs in the heat medium in the heat collecting part, supplemental water is supplied to the solar heat collecting part due to the characteristics of the solar heat system, so that the concentration of antifreeze in the replenishing water becomes low. As a result, the temperature of the solar heat collecting part is lowered resulting in a frost wave, which causes economic damage. The purpose of this study was to develop a device capable of controlling the antifreeze concentration automatically in response to a temperature drop to prevent freezing of the heat collecting part generated in the solar energy system. The electrical conductivity of the H2O component was larger than that of PG, and the resistance increased with decreasing temperature. The PG concentration control values of 40, 50, and 60% should be controlled through calibration with a PG concentration of 39.6, 50.7, and 60.1%.

STSAT-3 Main Payload, MIRIS Flight Model Developments

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • The Main payload of the STSAT-3 (Korea Science & Technology Satellite-3), MIRIS (Multipurpose Infra-Red Imaging System) has been developed for last 3 years by KASI, and its Flight Model (FM) is now being developed as the final stage. All optical lenses and the opto-mechanical components of the FM have been completely fabricated with slight modifications that have been made to some components based on the Engineering Qualification Model (EQM) performances. The components of the telescope have been assembled and the test results show its optical performances are acceptable for required specifications in visual wavelength (@633 nm) at room temperature. The ensuing focal plane integration and focus test will be made soon using the vacuum chamber. The MIRIS mechanical structure of the EQM has been modified to develop FM according to the performance and environment test results. The filter-wheel module in the cryostat was newly designed with Finite Element Analysis (FEM) in order to compensate for the vibration stress in the launching conditions. Surface finishing of all components were also modified to implement the thermal model for the passive cooling technique. The FM electronics design has been completed for final fabrication process. Some minor modifications of the electronics boards were made based on EQM test performances. The ground calibration tests of MIRIS FM will be made with the science grade Teledyne PICNIC IR-array.

  • PDF

A Study on the Measurements of Sub-surface Residual Stress in the Field of Linear Stress Gradient (선형구배 응력장에서 표층의 잔류응력 측정에 관한 연구)

  • 최병길;전상윤;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1632-1642
    • /
    • 1992
  • When a blind hole of small diameter is drilled in the field of residual stress, strain relieved around the hole is function of magnitude of stress, patterns of stress distribution and hole geometry of diameter and depth. Relieved strain coefficients can be calculated from FEM analysis of relieved strain and actual stress. These relieved strain coefficients make it possible to measure residual stress which vary along the depth in the subsurface of stressed material. In this study, the calibration tests of residual stress measurement are carried out by drilling a hole incrementally on the cantilever or on the tensile test bar. Residual stresses can be determined from measured strains around a shallow hole by application of power series method. For the sake of reliable measurement of residual stress, much efforts should be done to measure relieved strains and hole depth more accurately comparing with conventional procedures of gage subject to the external load. Otherwise linear equations converting strains into stresses may yield erratic residual stresses because of ill-conditions of linear equations. With accurate measurements of relieved strains, residual stress even if varying along the depth can be measured. It is also possible to measure residual stress in the thin film of material by drilling a shallow hole.

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도 계측시 잡음원인과 대책)

  • Kwon, Soon-Tae;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.189-197
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the interference of Mie scattering, which is main obstacle of the measuring concentration with Rayleigh scattering, a hardware filter was installed for reducing the number density of particles. Furthermore a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. In addition, background noisy was reduced by adjusting the optical array and applying the pin hall and beam trap. The results show that LRS can provide useful information about concentration field and the software filter is very effective method to remove Mie interference.

Measurements on Transient Mixing Concentrations of Two Fuel Oils using a Quantitative Flow Visualization Technique (정량적 유동가시화 기술을 이용한 이종연료유 과도 혼합 농도분포 측정)

  • Yum, Joo-Ho;Doh, Deog-Hee;Cho, Gyeong-Rae;Min, Seong-Ki;Kim, Myung-Ho;Ryu, Gyong-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.4
    • /
    • pp.364-372
    • /
    • 2012
  • Transient mixing states of two different fuel oils, dimethylformamide (DMF) oil and JetA1 oil, were investigated by using a color image processing and a neural network. A tank ($D{\times}H$, $310{\times}370mm$) was filled with JetA1 oil. The DMF oil was filled at a top tank, and was mixed with the JetA1 oil in the tank mixing tank via a sudden opening which was performed by nitrogen gas with 1.9 bar. An impeller was rotated with 700 rpm for mixing enhancements of the two fuel oils. To visualize the mixing state of the DMF oil with the JetA1 oil, the DMF oil was coated with Rhodamine B whose color was red. A LCD monitor was used for uniform illumination. The color changes of the DMF oil were captured by a camcoder and the images were transferred to a host computer for quantifying the information of color changes. The color images of two mixed oils were captured with the camcoder. The R, G, B color information of the captured images was used to quantify the concentration of the DMF oil. To quantify the concentration of the DMF oil in the JetA1 oil, a calibration of color-to-concentration was carried out before the main experiment was done. Transient mixing states of DMF oil with the JetA1 oil since after the sudden infiltration were quantified and characterized with the constructed visualization technique.

Use of Spectrophotometry for Quantitative Determination of Soil Clay Content (분광광도계를 이용한 점토함량 분석)

  • Park, Soon-Nam;Kim, Kye-Hoon;Kang, Ji-Young
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • This study was conducted to develop a method for the quantitative determination of soil clay content by spectophotometry. The optimum wavelength obtained with reference clay minerals for spectrophotometry was 500 nm. For the proposed spectrophotometry, 0.5 g of soil sample was put in the 250 ml Erlenmeyer flask and 100 ml dispersing agent was added. After shaking the flask at 130 rpm with a mechanical shaker overnight, the flask was removed from the shaker and was shaken up-and-down for 30 seconds. With a micro-pipet, 4 ml of the suspension was transferred into the previously-inserted cell and the absorbance was measured instantly. Results by the spectrophotometry for clay content analysis were compared with those by the conventional sedimentation technique (the pipet method). The proposed equation was $y\;=\;38.03x_1-0.17x_2-1.17$, where y, $x_1$, and $x_2$ were clay content (%) by the pipet method, water content corrected clay content (%) by spectrophotometry, and organic matter content ($g{\cdot}kg^{-1}$), respectively. The regression coefficient for the equation was $r\;=\;0.984^{**}$, indicating highly significant correlation between the results of the two methods.

The useage of the EPID as a QA tools (EPID의 적정관리 도구로서의 유용성에 관한 연구)

  • Cho Jung Hee;Bang Dong Wan;Yoon Seong Ik;Park Jae Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • Purpose : The aim of this study is to conform the possibility of the liquid type EPID as a QC tools to clinical indication and of replacement of the film dosimetry. Aditional aim is to describe a procedure for the use of a EPID as a physics calibration tool in the measurements of radiation beam parameters which are typically carried out with film. Method & Materials : In this study we used the Clinac 2100c/d with EPID. This system contains 65536 liquid-filled ion chambers arranged in a $256{\times}256$ matrix and the imaging area is $32.5{\times}32.5cm$ with liquid layer thickness of 1mm. The EPID was tested for different field sizes under typical clinical conditions and pixel values were calibrated against dose by producing images using various thickness of lead attenuators(lead step wedge) using 6 & 10MV x-ray. We placed various thickness of lead on the table of linear accelerator and set the portal vision an SDD of 100cm. To acquire portal image we change the field size and energy, and we recorded the average pixel value in a $3{\times}3$ pixel region of interest(ROI) at field center was recorded. The pixel values were also measured for different field sizes in order to evaluate the dependence of pixel value on x-ray energy spectrum and various scatter components. Result : The EPID, as a whole, was useful as a QA tool and dosimetry device. In mechanical check, cross-hair centering was well matched and the error was less than ?2mm and light/radiation field coincidence was less than 1mm also. In portal dosimetry the wider the field size the the higher the pixel value and as the lead thickness increase, the pixel value was exponentially decreased. Conclusions : The EPID was very suitable for QA tools and it can be used to measure exit dose during patients treatment with reasonable accuracy. But when indicate the EPID to clincal study deep consideration required

  • PDF

ATTITUDE AND EXPOSURE CORRECTIONS OF FIMS DATA (원자외선분광기 FIMS 자료의 자세정보 및 노출시간 보정)

  • Seon, K.I.;Yuk, I.S.;Ryu, K.S.;Lee, D.H.;Park, J.H.;Jin, H.;Shinn, J.H.;Nam, U.W.;Han, W.;Min, K.;Korpela Eric;Nishikida Kaori;Edelstein Jerry
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.399-416
    • /
    • 2004
  • The FIMS (Far-ultraviolet IMaging Spectrograph), the main payload onboard the first Korean science satellite STSAT-1, has performed various observations since its launch on September 2003. It has been found that the attitude informations provided by spacecraft bus system have a time offset problem, and the problem has been extensively studied. After the time offset correction, boresight offsets between FIMS fields of view, of long and short wavelength bands, respectivley, and spacecraft attitude systems, which are mainly due to alignment error between the FIMS and spacecraft mechanical systems, were calculated through the observations of well known calibration targets. Monthly status and precision of the attitude information are also described. Correction methods for spatially variable exposure, intrinsic to FIMS data, are discussed. These results are essential to the FIMS data analysis, and will be used as references for subsequent studies on more accurate attitude corrections.

The Flight Model of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Won-Kee;Kim, Il-Joong;Park, Youngsik;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Mingyu;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.64.3-65
    • /
    • 2016
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared instrument optimized to the Next Generation of small satellite series (NEXTSat). The capability of both imaging and low spectral resolution spectroscopy in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the main observational targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design is optimized to have a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. Two linear variable filters are used to realize the imaging spectroscopy with the spectral resolution of ~20. The mechanical structure is considered to endure the launching condition as well as the space environment. The compact dewar is confirmed to operate the infrared detector as well as filters at 80K stage. The electronics is tested to obtain and process the signal from infrared sensor and to communicate with the satellite. After the test and calibration of the engineering qualification model (EQM), the flight model of the NSS is assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. Here, we report the test results of the flight model of the NISS.

  • PDF