• Title/Summary/Keyword: Mechanical ball milling

Search Result 271, Processing Time 0.025 seconds

A Study on the Cutting Force and Machining Error on the Inclined Plane in Ball-end Milling (볼엔드밀에 의한 경사면 가공시 절삭력 및 가공 오차에 관한 연구)

  • Doo, Seung;Hong, Joo-Won;Suh, Nam-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.112-119
    • /
    • 2001
  • In modern manufacturing, many products that have geometrically complicated features, including three-dimensional sculptured surfaces, are being designed and produced to meet various sophisticated functional specifications. The cutting force is required not only for the design of machine and cutting tools, but also for the determination of the cutting conditions for the various machining operations. The ball-end mill is deflected by the cutting force and, the tool deflection is one of the main reasons of the machining errors on a free-form surface. Hence, The cutting force generated in the ball-end milling is the most important property of the machining. The purpose of this study is to find the characteristics of the cutting force in inclined plane and the resultant machining errors in the ball-end milling process. Although the depth of cut is constant in the inclined plane, the cutting force area varies due to the hemisphere of the ball-end mill.

  • PDF

Mechanical alloying behavior of PbTe thermoelectric materials (PbTe 열전재료의 기계적 합금화 거동)

  • O, Tae-Seong;Choe, Jae-Sik;Hyeon, Do-Bin
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.223-231
    • /
    • 1995
  • Mechanical alloying behavior of the PbTe intermetallic compound, which is used for thermoelectric generation, has been investigated with milling time and ball-to-powder weight ratio. Formation of PbTe alloy was completed by mechanical alloying of the as-mixed Pb and Te powders for 2 minutes at ball-to-powder weight ratio of 2 : 1. In situ measurement of the abrupt temperature rise during the ball milling process indicated that the PbTe intermetallic compound was formed by a self-sustained reaction rather than diffusional reactions. Lattice constant of PbTe alloy fabricated by mechanical alloying, 0. 6462nm, was not varied with milling time and ball-to-powder weight ratio. This value of the lattice parameter is in excellent agreement with 0.6459nm, which was reported for PbTe powders processed by melting and grinding.

  • PDF

Fabrication of WC/Co composite powder from oxide of WC/Co hardmetal scrap by carbothermal reduction process (WC/Co 초경합금 스크랩 산화물로부터 환원/침탄공정에 의한 WC/Co 복합분말 제조)

  • Lee, Gil-Geun;Lim, Young Soo
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.240-245
    • /
    • 2018
  • This study focuses on the fabrication of a WC/Co composite powder from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere for the recycling of WC/Co hardmetal. Mixed powders are manufactured by mechanically milling the oxide powder of WC-13 wt% Co hardmetal scrap and carbon black with varying powder/ball weight ratios. The oxide powder of WC-13 wt% Co hardmetal scrap consists of $WO_3$ and $CoWO_4$. The mixed powder mechanically milled at a lower powder/ball weight ratio (high mechanical milling energy) has a more rapid carbothermal reduction reaction in the formation of WC and Co phases compared with that mechanically milled at a higher powder/ball weight ratio (lower mechanical milling energy). The WC/Co composite powder is fabricated at $900^{\circ}C$ for 6 h from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere. The fabricated WC/Co composite powder has a particle size of approximately $0.25-0.5{\mu}m$.

Single Walled Carbon Nanotubes-Reinforced Metal Matrix Composite Materials Fabricated by Spark Plasma Sintering (방전플라즈마 소결공정으로 제조된 단일벽탄소나노튜브 강화 금속기지 복합재료)

  • Kwon, Hansang
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.94-99
    • /
    • 2017
  • Single walled carbon nanotubes were mixed with various metal powders by mechanical ball milling and sintered by spark plasma sintering processes. Two compositional (0.1 and 1 vol%) of the single walled carbon nanotubes were dispersed onto the pure aluminum, 5052 aluminum alloy, pure titanium, Ti6Al4Vanadium alloy, pure copper, and stainless steel 316L. Each composite powders were spark plasma sintered at $600^{\circ}C$ and well synthesized regardless of the matrices. Vickers hardness of the composite materials was measured and they exhibited higher values regardless of the carbon nanotubes composition than those of the pure materials. Moreover, single walled carbon nanotubes reinforced copper matrix composites showed highest enhancement between the other metal matrices system. We believe that low energy mechanical ball milling and spark plasma sintering processes are useful tool for fabricating of the carbon nanotubes-reinforced various metal matrices composite materials. The single walled carbon nanotubes-reinforced various metal matrices composite materials could be used as an engineering parts in many kind of industrial fields such as aviation, transportation and electro technologies etc. However, detail strengthening mechanism should be carefully investigated.

Ball end milling of sculptured surface models by considering machinability (절삭성을 고려한 자유곡면 모형의 볼 엔드 밀링가공에 관한 연구)

  • 박천경;맹희영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2048-2061
    • /
    • 1991
  • As compared with other cutting types, the ball end milling process causes a complexity in cutting system and a falling-off of machinability. In order to increase the productivity and efficiency in th NC machining of sculptured surfaces, this study carried out the qualitative linearized evaluation about the ball end milling system and applied their practical expressions to the technological processor at the cutter path planning stage. The evaluated expressions were proved to be adequate for practical use from an accuracy point of view and the estimation models were applied to sculptured surface machining processes for finding variable machining conditions. Consequently, it was recognized that variable machining conditions bring about the dispersion of force system and the reduction of machining time by more than 50%.

Mechanically Driven Decomposition of Intermetallics

  • Kwon, Young-Soon;Kim, Hyun-Sik;Gerasimov, Konstantin B.
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.422-432
    • /
    • 2002
  • Mechanically driven decomposition of intermetallics during mechanical milling(MM 1 was investigated. This process for Fe-Ce and Fe-Sn system was studied using conventional XRD, DSC, magnetization and alternative current susceptibility measurements. Mechanical alloying and milling form products of the following composition (in sequence of increasing Gecontent): $\alpha$(${\alpha}_1$) bcc solid solution, $\alpha$+$\beta$-phase ($Fe_{2-x}Ge$), $\beta$-phase, $\beta$+FeGe(B20), FeGE(B20), FeGe(B20)+$FeGe_2$,$FeGe_2$,$FeGe_2$+Ge, Ge. Incongruently melting intermetallics $Fe_6Ge_5$ and $Fe_2Ge_3$ decompose under milling. $Fe_6Ge_5$ produces mixture of $\hat{a}$-phase and FeGe(B20), $Fe_2Ge_3$ produces mixture of FeGe(B20) and $FeGe_2$ phases. These facts are in good agreement with the model that implies local melting as a mechanism of new phase for-mation during medchanical alloying. Stability of FeGe(B20) phase, which is also incongruently melting compound, is explained as a result of highest density of this phase in Fe-Ge system. Under mechanical milling (MM) in planetary ball mill, FeSn intermetallic decomposes with formation $Fe_5Sn_3$ and $FeSn_2$ phases, which have the biggest density among the phases of Fe-Sn system. If decomposition degree of FeSn is relatively small(<60%), milled powder shows superparamagnetic behavior at room temperature. For this case, magnetization curves can be fitted by superposition of two Langevin functions. particle sizes for ferromagnetic $Fe_5Sn_3$ phase determined from fitting parameters are in good agreement with crystalline sizes determined from XRD data and remiain approximately chageless during MM. The decomposition of FeSn is attributed to the effects of local temperature and local pressure produced by ball collisions.

Thermoelectric Properties of Bi0.4Sb1.6Te3 Sintered Body Fabricated by Mechanical Grinding Process (기계적 밀링공정에 의해 제조된 Bi0.4Sb1.6Te3 소결체의 열전특성)

  • Lee, Gil-Geun;Shin, Sung-Chul;Kim, Woo-Yeol;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.313-320
    • /
    • 2006
  • The present study is to analyze the thermoelectric properties of $Bi_{0.4}Sb_{1.6}Te_3$ thermoelectric materials fabricated by the mechanical grinding process. The $Bi_{0.4}Sb_{1.6}Te_3$ powders were prepared by the combination of mechanical milling and reduction treating methods using simply crushed pre-alloyed $Bi_{0.4}Sb_{1.6}Te_3$ powder. The mechanical milling was carried out using the tumbler-ball mill and planetary ball mill. The tumbler-ball milling had an effect on the carrier mobility rather than the carrier concentration, whereas, the latter on the carrier concentration. The specific electric resistivity and Seebeck coefficient decreased with increasing the reduction-heat-treatment time. The thermal conductivity continuously increased with increasing the reduction-heat-treatment time. The figure of merit of the $Bi_{0.4}Sb_{1.6}Te_3$ sintered body prepared by the mechanical grinding process showed higher value than one of the sintered body of the simply crushed powder.

Study on the heat transfer properties of raw and ground graphene coating on the copper plate

  • Lee, Sin-Il;Tanshen, Md.R.;Lee, Kwang-Sung;Munkhshur, Myekhlai;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.78-85
    • /
    • 2013
  • A high thermal conductivity material, namely graphene is treated by planetary ball milling machine to transport the heat by increasing the temperature. Experiments were performed to assess the heat transfer enhancement benefits of coating the bottom wall of copper substrate with graphene. It is well known that the graphene is unable to disperse into base fluid without any treatment, which is due to the several reasons such as attachment of hydrophobic surface, agglomeration and impurity. To further improve the dispersibility and thermal characteristics, planetary ball milling approach is used to grind the raw samples at optimized condition. The results are examined by transmission electron microscopy, x-ray diffraction, Raman spectrometer, UV-spectrometer, thermal conductivity and thermal imager. Thermal conductivity measurements of structures are taken to support the explanation of heat transfer properties of different samples. As a result, it is found that the planetary ball milling approach is effective for improvement of both the dispersion and heat carriers of carbon based material. Indeed, the heat transfer of the ground graphene coated substrate was higher than that of the copper substrate with raw graphene.

The Optimization of Ball End-Milling Parameters on the Surface Roughness of STD61 Steel using the Taguchi Method (Taguchi 방법을 이용한 STD61의 표면거칠기에 대한 볼 엔드 밀링 파라미터 최적화)

  • Ahmed, Farooq;Byeon, Ji Hyeon;Park, Ki Moon;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.153-158
    • /
    • 2017
  • When considering the proper function and life cycle length of a product, its surface finish plays an important role. This experimental study was carried out to understand the effect of input factors on surface roughness and how it can be minimized by controlling the input parameters. This experimental work was performed by machining the surface of STD 61 blocks with a surface inclined at $30^{\circ}$ by ball end-milling and optimizing the input parameters using the Taguchi technique. Signal-to-Noise (S/N) ratio and analysis of variance (ANOVA) were applied to find the significance of the input parameters. The optimum level of input parameters to minimize surface roughness was obtained.