Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.3.240

Fabrication of WC/Co composite powder from oxide of WC/Co hardmetal scrap by carbothermal reduction process  

Lee, Gil-Geun (Department of Materials System Engineering, College of Engineering, Pukyong National University)
Lim, Young Soo (Department of Materials System Engineering, College of Engineering, Pukyong National University)
Publication Information
Journal of Powder Materials / v.25, no.3, 2018 , pp. 240-245 More about this Journal
Abstract
This study focuses on the fabrication of a WC/Co composite powder from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere for the recycling of WC/Co hardmetal. Mixed powders are manufactured by mechanically milling the oxide powder of WC-13 wt% Co hardmetal scrap and carbon black with varying powder/ball weight ratios. The oxide powder of WC-13 wt% Co hardmetal scrap consists of $WO_3$ and $CoWO_4$. The mixed powder mechanically milled at a lower powder/ball weight ratio (high mechanical milling energy) has a more rapid carbothermal reduction reaction in the formation of WC and Co phases compared with that mechanically milled at a higher powder/ball weight ratio (lower mechanical milling energy). The WC/Co composite powder is fabricated at $900^{\circ}C$ for 6 h from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere. The fabricated WC/Co composite powder has a particle size of approximately $0.25-0.5{\mu}m$.
Keywords
hardmetal; recycling; carbothermal reduction; powder; tungsten carbide;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 K. J. A. Brookes: World Directory and Handbook of Hardmetals and Hard Materials, sixth ed., International Carbide Data, Hertfordshire (1996) 9.
2 K. Halada: J. Jpn. Soc. Powder & Powder Metall., 57 (2010) 87.   DOI
3 J. Jeong, J. C. Lee, S. W. Park, and K. S. Kang: J. of Korean Inst. of Resources Recycling, 21 (2012) 82.   DOI
4 C. S. Freemantle, N. Sacks, M. Topic and C. A. Pineda- Vargas: Int. J. Refract. Met. Hard Mater., 44 (2014) 94.   DOI
5 E. Lassner and W. D. Schubert: Tungsten. Properties, Chemistry, Technology of the Element, Alloys and Chemical Compound, Kluwer Academic, New York, (1999) 137.
6 T. Kojima, T. Shimizu, R. Sasai, and H. Itoh: J. Mater. Sci., 40 (2005) 5167.   DOI
7 V. V. Malyshev and A. I. Gab: Theor. Found. Chem. Eng., 41 (2007) 436.   DOI
8 S. Wongsisa, P. Srichandr and N. Poolthong: Mater. Trans., 56 (2015) 70.   DOI
9 G. G. Lee and G. H. Ha : J. Korean. Powder. Metall. Inst., 12 (2005) 112.   DOI
10 G. G. Lee and G. H. Ha: PM Tool Materials, H. Danninger and R. Ratzi (Ed.), Euro PM2004 Proc. Vol. 3, Shrewsbury, UK (2004) 403.
11 G. G. Lee and G. H. Ha: Met. Mater. Int., 22 (2016) 260.   DOI
12 C. M. Kwon, G. G. Lee and G. H. Ha: Korean J. Met. Mater., 54 (2016) 743.   DOI
13 G. K. Williamson and W. H. Hall: Acta Metall., 1 (1953) 22.   DOI
14 K. Venkateswarlu, A. C. Bose and N. Rameshbabu: Physica B, 405 (2010) 4256.   DOI
15 H. K. Khoa, S. W. Bae, S. W. Bae, B. W. Kim and J. S. Kim: J. Korean Powder. Metall. Inst., 21 (2014) 155.   DOI
16 P. R. Santhanam, A. Ermoline and E. L. Dreizin: Chem. Eng. Sci., 101(2013) 366.   DOI
17 P. R. Santhanam and E. L. Dreizin: Powder. Technol., 221 (2012) 403.   DOI
18 H. Y. Jeong and G. G. Lee: J. Korean Powder Metall. Inst., 23 (2016) 54.   DOI
19 R. Abbaschian, L. Abbaschian and R. E. Reed-Hill: Physical Metallurgy Principles fourth ed., Cengage Learning, New York (2010) 348.
20 Z. Sadighi, A. Ataie and M. R. Barati: Met. Mater. Int., 20 (2014) 77.   DOI
21 N. Burgio, A. Iasonna, M. Magini, S. Martelli and F. Padella: Il Nuovo Cimento D, 13 (1991) 459.   DOI