• Title/Summary/Keyword: Mechanical ball milling

Search Result 271, Processing Time 0.028 seconds

Influence of Milling Conditions on the Microstructural Characteristics and Mechanical Properties of Non-equiatomic High Entropy Alloy (밀링 조건이 고엔트로피 합금의 미세조직 및 기계적 특성에 미치는 영향)

  • Seo, Namhyuk;Jeon, Junhyub;Kim, Gwanghoon;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2021
  • High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-to-powder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.

Wettability and Microstructures of Ag System Insert Metals Manufactured by Mechanical Alloying Method: (기계적 합금화방법으로 만들어진 Ag계 삽입금속의 젖음성과 미세조직)

  • Kim, Gwang-Su;No, Gi-Sik;Hwang, Seon-Hyo
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1020-1027
    • /
    • 2001
  • Powder type Ag system insert metals were manufactured by mechanical alloying method. Alloying method was the ball milling process using zirconia ball media, and all alloying variables were constant except the milling time. The milling times were selected 24, 48 and 72 hours. The insert metals made by milling method were observed using scanning electron microscope and x-ray analyses. And also, the evaluation of wettability and microstructures of the insert metals were conducted to investigate the characteristics of the brazed joint. The wettability of the insert metals made by milling of 48 hours, was the best condition. And the insert metals contained Cd shows good wettability, however, there was the oxides residue on the brazing test specimen. The microstructures of the manufactured and the commercial insert metals were almost same displaying the Cu- rich proeutectic and Ag-rich eutectic. Further, there were some porosities. The 48 hours alloyed insert metal was exhibited the most sound brazed joint without containing porosity due to the superior wettability and good alloying condition.

  • PDF

Microstructures and Mechanical Properties of Ti-20Mo-0.5EB Composites (Hydroxyapatite를 대체하여 말뼈를 첨가한 Ti-20Mo-0.5EB의 미세조직과 기계적 특성)

  • Bae, Suhyun;Jeong, Wonki;Shin, Se-Eun
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.403-409
    • /
    • 2021
  • In this study, Ti-Mo-EB composites are prepared by ball milling and spark plasma sintering (SPS) to obtain a low elastic modulus and high strength and to evaluate the microstructure and mechanical properties as a function of the process conditions. As the milling time and sintering temperature increased, Mo, as a β-Ti stabilizing element, diffused, and the microstructure of β-Ti increased. In addition, the size of the observed phase was small, so the modulus and hardness of α-Ti and β-Ti were measured using nanoindentation equipment. In both phases, as the milling time and sintering temperature increased, the modulus of elasticity decreased, and the hardness increased. After 12 h of milling, the specimen sintered at 1000℃ showed the lowest values of modulus of elasticity of 117.52 and 101.46 GPa for α-Ti and β-Ti, respectively, confirming that the values are lower compared to the that in previously reported studies.

Enhancement of the Critical Current Density of $MgB_2$ Prepared using Mechanically Milled and Glycerin Treated Boron Powder (기계적 밀링 및 글리세린 처리된 보론 분말을 사용하여 제조된 $MgB_2$의 임계전류밀도 향상)

  • Jun, Byung-Hyuk;Kim, Yi-Jeong;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.40-44
    • /
    • 2008
  • A combined process of a mechanical ball milling and liquid glycerin ($C_{3}H_{8}O_3$) treatment of boron (B) powder has been conducted to enhance the superconducting properties of $MgB_2$. The individual aims of the mechanical milling and the glycerin treatment were to reduce the grain size of the $MgB_2$ and to achieve homogeneous carbon (C) incorporation into the $MgB_2$, respectively. Four kinds of B powders of as-received, glycerin treated, 2 h milled, and 2 h milled + glycerin treated were prepared. $MgB_2$ bulks were fabricated by in situ process using the prepared B powders. The mechanical ball milling was effective for a grain refinement, and a lattice disorder was easily achieved by glycerin addition. It was found that the critical current density ($J_c$) values were enhanced in the samples with milled B or glycerin treated B only. In the $MgB_2$ bulk prepared with both milled and glycerin treated B, the $J_c$ was further increased due to a higher grain boundary density and a greater C substitution.

  • PDF

A Study on the Prediction of Tool Deflection and Precision Machining in Ball End Milling Process (볼 엔드밀 가공에서의 공구 처짐 예측과 정밀 가공에 관한 연구)

  • 조현덕;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1669-1680
    • /
    • 1992
  • This paper deals with the prediction of cutting force and tool deflection and it's application in the flexible ball end milling process. Machining accuracy is determined by the static stiffness of tool system and the instantaneous cutting force. The static stiffness of tool system consists of the stiffness of holer and the stiffness of ball end mill. The stiffness of holder was obtained from the experimental result, and the stiffness of ball end mill with two flutes was theoretically analyzed by the finite elements method. In cutting process, the instantaneous cutting force is dependent upon the instantaneous feed and pick feed(radial depth of cut) which are varied by tool deflection. For the calculation of cutting force and deflection of ball end mill, iteration method is used with the linear interpolation to the data of cutting force obtained from rigid ball end mill and the data of tool deflection. In this paper, a for enhancing accuracy is discussed. And the selection of helix angle for minimizing machining error is also discussed.

Refinement Behavior of Magnesium Powder by Attrition Milling Under Different Condition (어트리션 볼밀링 조건 변화에 따른 마그네슘 분말의 미세화 거동)

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Kim, Jung-Han;Kim, Tae-Kyung;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.591-598
    • /
    • 2014
  • In this research, magnesium powder was prepared by gas atomizing. Refinement behaviors of magnesium powder produced under different conditions were investigated using a mechanical milling (attrition milling) process. Analyses were performed to assess the characterization and comparison of milled powder with different steel ball sizes and milling times. The powders were analyzed by field emission scanning electron microscope, apparent density and powder fluidity. The particle morphology of the Mg powders changed from spherical particles of feed metals to irregular oval particles, then plate type particles, with an increasing milling time. Because of the HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, which results in producing plate-type powders. An increase in ball size and the impact energy of the magnesium powder maximizes the effect of refinement. Furthermore, it is possible to improve the apparent density and fluidity according to the smoothness of the surface of the initial powder.

Microstructural Characteristics of Ni/YSZ Cermet for High Temperature Electrolysis by Mechanical Alloying (기계적 합금화법으로 제조된 고온 수전해용 Ni/YSZ 전극의 미세구조 특성)

  • Park Keun-Man;Chae Ui-Seok;Hong Hyun Seon;Choo Soo-Tae
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.743-748
    • /
    • 2004
  • Modified Ni/YSZ cermets for high temperature electrolysis were synthesized by the direct ball milling of Ni and YSZ powder. The ball milling was carried out in dry process and in ethanol with varying milling time. While the dry-milling decreased the average size from 65 to $80{\mu}m$, the wet-milling decreased the average size down to $10{\mu}m$. In addition, very fine particles less than $0.1{\mu}m$ were observed in the wet-milling condition. The subsequent process of cold-pressing and sintering at $900^{\circ}C$ for 2 h did not affect the particle size of dry-milled powder. The electrical conductivity of the dry-milled Ni/YSZ cermet showed the value of $5{\times}10^{2}\;S/cm$ and this value was increased to $1.4{\times}10^{4}\;S/cm$ after the sintering at $900^{\circ}C$ for 2 h.

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.

A Study on Mechano-chemical Ball Milling Process for Fabricating Tungsten Disulfide Nanosheets (이황화텅스텐 나노시트 제조를 위한 기계화학적 볼밀링 공정 연구)

  • Kim, Seulgi;Ahn, Yunhee;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.376-381
    • /
    • 2022
  • Tungsten disulfide (WS2) nanosheets have attracted considerable attention because of their unique optical and electrical properties. Several methods for fabrication of WS2 nanosheets have been developed. However, methods for mass production of high-quality WS2 nanosheets remain challenging. In this study, WS2 nanosheets were fabricated using mechano-chemical ball milling based on the synergetic effects of chemical intercalation and mechanical exfoliation. The ball-milling time was set as a variable for the optimized fabricating process of WS2 nanosheets. Under the optimized conditions, the WS2 nanosheets had lateral sizes of 500-600 nm with either a monolayer or bilayer. They also exhibited high crystallinity in the 2H semiconducting phase. Thus, the proposed method can be applied to the exfoliation of other transition metal dichalcogenides using suitable chemical intercalants. It can also be used with high-performance WS2-based photodiodes and transistors used in practical semiconductor applications.

The Specficity of Phase Transitions of Lead Monoxide (산화납의 특이상전이)

  • 김정욱;최성철;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.623-628
    • /
    • 1993
  • Lead monoxide has two phases at room temperature. One is a yellow orthorhombic phase, the other is a redtetragonal phase. Sometimes two phases are hybrided. The specificity of phase transitions of lead oxide is found during the milling of the batch including lead oxide. The pure orthorhombic phase of PbO can be transformed to the tetragonal phase perfectly by wet ball milling (milling liquid is distilled water) without thermal energy. However, when ethyl alcohol, isopropyl alcohol and aceton are used as milling liquid, respectively, the hybrid form of orthorhombic andtetragonal phases is obtained by wet ball milling. From the hybrid form heat-treated at $600^{\circ}C$ for 3hrs, this work results that mechanical phase transition of orthorhombic phase make a new form as distorted type orthorhombic phase of PbO.

  • PDF