Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.10.743

Microstructural Characteristics of Ni/YSZ Cermet for High Temperature Electrolysis by Mechanical Alloying  

Park Keun-Man (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Chae Ui-Seok (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Hong Hyun Seon (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Choo Soo-Tae (Plant Engineering Center, Institute for Advanced Engineering (IAE))
Publication Information
Korean Journal of Materials Research / v.14, no.10, 2004 , pp. 743-748 More about this Journal
Abstract
Modified Ni/YSZ cermets for high temperature electrolysis were synthesized by the direct ball milling of Ni and YSZ powder. The ball milling was carried out in dry process and in ethanol with varying milling time. While the dry-milling decreased the average size from 65 to $80{\mu}m$, the wet-milling decreased the average size down to $10{\mu}m$. In addition, very fine particles less than $0.1{\mu}m$ were observed in the wet-milling condition. The subsequent process of cold-pressing and sintering at $900^{\circ}C$ for 2 h did not affect the particle size of dry-milled powder. The electrical conductivity of the dry-milled Ni/YSZ cermet showed the value of $5{\times}10^{2}\;S/cm$ and this value was increased to $1.4{\times}10^{4}\;S/cm$ after the sintering at $900^{\circ}C$ for 2 h.
Keywords
Ni/YSZ; cermet; mechanical alloying; electrical conductivity; high temperature electrolysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Z. Zhu and S. C. Deevi, Materials Science and Engineering A, 362, 228 (2003)   DOI   ScienceOn
2 J. H. Lee, H. Moon, H. W. Lee, J. Kim, J. D. Kim and K. H. Yoon, Solid State Ionics, 148, 15 (2002)   DOI   ScienceOn
3 J. S. Herring, J. E. O'Brien, C. M. Stoots and P. A. Lessing, in Proceedings of ICAPP '04 (Pittsburgh, PA, USA, June, 2004), Paper 4322, p. 1-10
4 J. S. Benjamin and T. E. Volin, Metall. Trans., 5, 1930 (1974)
5 P. S. Gilman and J. S. Benjamin, Ann. Rev. Mater. Sci., 13, 279 (1983)   DOI
6 L. Lu and M. O. Lai, Mechanical Alloying, Kluwer Academic Publishers, Dordrecht, The Netherlands (1998)
7 H. Koide, Y. Someya, T. Yoshida and T. Maruyama, Solid State Ionics, 132, 253 (2000)   DOI   ScienceOn
8 H. Arashi, H. Naito and H. Miura, Int. J. Hydrogen Energy, 16, 603 (1991)   DOI   ScienceOn
9 A. L. Vance, 2003 Hydrogen & Fuel Cells Merit Review Meeting, Berkeley, CA, May 20 (2003)
10 G. B. Barbi and C. M. Mari, Solid State Ionics, 6, 341 (1982)   DOI   ScienceOn
11 S. Dutta, D. L. Block and R. L. Port, Int. J. Hydrogen Energy, 15, 387 (1990)   DOI   ScienceOn
12 F. J. Salzano, G. Skaperdas and A. Mezzina, Int. J. Hydrogen Energy, 10, 801 (1985)   DOI   ScienceOn
13 T. Fukui, S. Ohara, M. Naito and K. Nogi, Power Technology, 132, 52 (2003)   DOI   ScienceOn
14 H. Moon, H-W. Lee, J-H. Lee and K-H. Yoon, J. Kor. Ceram. Soc., 37(12), 1140 (2000)
15 B. G. Pound, D. J. M. Bevan and J. O. M. Bockris, Int. J. Hydrogen Energy, 6, 473 (1981)   DOI   ScienceOn
16 H. S. Sparcil and C. S. Tedmon, Jr, J. Electrochem. Soc., 116, 1618 (1969)   DOI
17 W. Donitz and E. Erdle, Int. J. Hydrogen Energy, 10, 801 (1985)   DOI   ScienceOn
18 W. Donitz, E. Erdle and R. Streicher, Electrochemical Hydrogen Technology, Amsterdam, Elsevier (1990)
19 W. Donitz, G. Dietrich, E. Erdle and R. Streicher, Int. J. Hydrogen Energy, 13, 283 (1988)   DOI   ScienceOn
20 H. S. Hong, S.-T. Choo and Y. Yun, Trans. of the Korea Hydrogen Energy Society, 14(4), 335 (2003)