• Title/Summary/Keyword: Mechanical and physical properties

Search Result 1,953, Processing Time 0.032 seconds

Wood Properties of Actinodaphne lancifolia Meisn. (육박나무의 목재성질)

  • 정성호;정두진;박병수;이도식;조성택;서준원
    • Journal of the Korea Furniture Society
    • /
    • v.13 no.2
    • /
    • pp.19-28
    • /
    • 2002
  • This study was carried out to investigate the wood properties for efficient utilization of warm temperate tree species. The tested species were Actinodaphne lancifolia Meisn. grown in Korea. Fundamental wood properties such as anatomical, physical and mechanical properties and chemical components were examined. This species was diffuse porous, straight grained and fine textured wood. The heartwoods of this species was not distinguished clearly to the sapwoods. This species had moderate specific gravity, shrinkage, and mechanical properties. And this species had high content of the extractives by organic solvent.

  • PDF

Mechanical Properties of Bamboo-reinforced Boards Manufactured with Phyllostachys bambusoides Growing in Damyang District (I) -- Physical Properties of Bamboo Strand Board -- (담양산 왕대를 이용한 대나무 강화 복합보드의 제조 및 역학적 특성 평가 (I) - 대나무 스트랜드 보드의 물리적 특성 -)

  • 소원택;박병대
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.26-35
    • /
    • 2003
  • Bamboo strand board (BSB) was made with Phyllostachys banbusoides growing in Damyang district. Physical and mechanical properties of this BSB were summarized as follows; The specific gravity of BSB was 0.63∼0.79. Specific gravity decreased slightly with the thickness and length of BSB. Moisture content of BSB manufactured was 5.8∼6.9%. The absorption ate of BSB (42∼48%) did not show any relationship with the thickness and length of BSB. The thickness swelling rate of BSB was 13.9∼17.0%, relatively higher than any other panel products. Thickness swelling rate increased with the thickness of BSB, showing the strand thickness influenced much more on the rate of thickness swelling of BSB than the length of strand. The 3-point bending strength of BSB was 98∼126kgf/$\textrm{cm}^2$. Bending strength of showed the tendency of increase with the increased length of BSB, but with the decreased thickness. In particular, the length of BSB showed more effect on the increase of bending strength of BSB than the thickness of BSB. The compression strength perpendicular to BSB surface was 411 ∼ 465 kgf/$\textrm{cm}^2$, and the optimal length of strand for the 1mm- and 2mm-thickness of strand was 40mm and 60mm, respectively. Compression strength paralleled to BSD was 160∼221kgf/$\textrm{cm}^2$ and the optimal length of strand for the 2mm-thickness of strand appeared to be 60mm. The present work showed that appearance, physical and mechanical strength of BSB appeared quite positive in terms of board qualities, suggesting that bamboo would be appropriate for the production of board materials. In addition, our work showed that the crucial factor for determining the mechanical characteristics of BSB was the dimension of strand.

  • PDF

Characterization of Artificial Graphite Electrodes

  • Park, Sei-Min;Han, Sang-Moo;Oh, Seh-Min
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.76-81
    • /
    • 2000
  • Physical properties of artificial graphite electrodes were evaluated along three different directions; circumferential (X), radial (Y), and axial (Z) directions. Four kinds of commercial electrode products were used in this study for the evaluation; pole (AP) and nipple (AN) of manufacturer A, pole (BP) and nipple (BN) of manufacturer B. The mechanical, electrical, and thermal properties in X and Y directions were very similar to each other. In Z direction, however, the mechanical properties, including flexural strength and compressive strength, were higher, and electric resistance and thermal expansion were much lower than those in the other directions. The microstructures observed by optical microscope and scanning electron microscope revealed that the differences in properties by the measuring direction were caused by the preferential alignment of needle cokes along the Z direction. When comparing the properties of the electrode samples in the same direction, the mechanical properties mainly depended on the bulk density or porosity of the samples as well as preferential alignment of needle cokes.

  • PDF

A Review of tissue changes caused by joint immobilization and classification of contracture (관절고정에 의한 조직변화와 구축의 분류에 대한 고찰)

  • Yoon, Sang-Jib;Lee, Joon-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.1
    • /
    • pp.727-734
    • /
    • 2001
  • Contracture is defined as the lack of full passive range of motion resulting from pint, muscle or soft tissue limitationprolonged Pint immobilization will result in stress and stretch deprivation and gradual development of contracture. the tissue changes caused by immobilization may be categorized as cellular modeling, ground substance and collagen response, and tissue response. contracture can be divided into three categories according to the anatomical location of pathological changes :arthrogenic, myogenic, soft tissue contractures Therapeutic approach of contracture is thermal or cold agents application, stretch or restoration of length, traction, manipulation, mobilization positioning and restoration of function. The purpose of this article is to review current concepts of mechanical properties and synthesis of collagen tissue and the underlying pathomechanics as it relates to evaluation and treatment of contracture.

  • PDF

Theoretical Analysis for the Measurement of Viscosity and Shear Modulus of Viscoelastic Fluids by Using a Quartz Crystal Oscillator (수정진동자를 사용한 점탄성 유체의 점성계수와 전단 탄성계수 측정에 관한 이론해석)

  • Suh, Yong-Kweon;Kim, Young-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.487-496
    • /
    • 2008
  • Quartz crystal oscillator is frequently used in measuring a very small amount of mass attached to or adsorbed on the surface of an electrode on the quartz plate. The physical principle is that the resonance frequency of the shear vibration of the quartz caused by an applied electric field is a function of the mass. Recently, effort has been tried to measure physical properties of viscoelastic fluids, such as viscosity and shear modulus. This paper presents useful formula that can be used in estimating the properties of viscoelastic fluids. Important finding in this analysis is that the formula can produce multiple values for the physical properties of the viscoelastic materials.

An Experimental Study on the physical-mechanical Properties of Ultra-High-Strength-Concrete (초고강도 콘크리트의 물리적·역학적 특성에 관한 실험적 연구)

  • Park, Hee-Gon;Lee, Jin-Woo;Bae, Yeoun-Ki;Kim, Woo-Jae;Lee, Jae-Sam;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.107-111
    • /
    • 2008
  • As high-rise buildings with 100 or more stories are being constructed, it is inevitable to use high-performance materials including high-performance concrete. What is most important in high-performance concrete is extremely high strength in order to reduce the section of members in high-rise buildings. During the last several years, there have been active researches on Ultra-high-strength concrete. While these researches have been mostly focused on strength development, however, other accompanying physical properties have not been studied sufficiently. Thus, this study purposed to obtain and analyze data on the physical-mechanical properties of Ultra-high-strength concrete through experiments and to use the results as basic information on required performance of concrete used in high-rise buildings.

  • PDF

The simple measurement of physical properties and stress fringe value for photo-elastic orthotropic material (광탄성 직교이방성체의 물성치와 응력 프린지치 간이 측정법)

  • 황재석;이광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.23-36
    • /
    • 1990
  • The various composite materials have been developed with the development of high strength material and the increasement of composite material usage. Therefore many researchers have studied about the stress analysis and the fracture mechanics for composite materials through the experiment or the theory. Among the experimental methods, the photoelastic experiments have been used for the stress analysis of the isotropic structures or the anisotropic structures. To analyze the stresses in the orthotropic material with photoelastic experiment, the basic physical properties ( $E_{L}$, $E_{T}$, $G_{LT}$ , .nu.$_{LT}$ ) and the basic stress fringe values ( $f_{L}$, $f_{T}$, $f_{LT}$ )are needed, therefore the relationships between the basic physical properties and the stress fringe values were derived in this paper. When the stress fringe value is very large, it was assured by the experiment that the relationships are established both in the room temperature and in the high temperature (T = 130.deg. C). Therefore the basic physical properties can be obtained from the relationships by measuring stress fringe values instead of measuring the basic physical properties.rties.

Relations between Physical and Mechanical Properties of Core Samples from the Bukpyeong and Pohang Basins (북평분지와 포항분지 시추코어의 물리적 성질과 역학적 성질간의 관계)

  • Kim, Hyunjin;Song, Insun;Chang, Chandong;Lee, Hikweon;Kim, Taehee
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.329-340
    • /
    • 2013
  • A geologic survey of the Bukpyeong and Pohang basins, as candidate basins for the geological storage of $CO_2$, was performed to evaluate storage capacity and security. To analyze the mechanical stability of the storage reservoir and cap rocks, we measured the porosity, seismic velocity, uniaxial strength, internal frictional angle, and Young's modulus of core samples recovered from the two basins. It is costly and sometimes impossible to conduct tests over the entire range of drill holes, and continuous logging data do not yield the mechanical parameters directly. In this study, to derive the mechanical properties of geologic formations from the geophysical logging data, we determined the empirical relations between the physical properties (seismic velocity, porosity, and dynamic modulus) and the mechanical properties (uniaxial strength, internal friction angle) of the core samples. From the comparison with our core test data, the best fits to the two basins were selected from the relations suggested in previous studies. The relations between uniaxial strength, Young's modulus, and porosity of samples from the Bukpyeong and Pohang basins are more consistent with certain rock types than with the locality of the basins. The relations between the physical and mechanical properties were used to estimate the mechanical rock properties of geologic formations from seismic logging data. We expect that the mechanical properties could also be used as input data for a modeling study to understand the mechanical instability of rock formations prior to $CO_2$ injection.

Effect of Transition Metal Oxides Addition on Yttria - stabilized Zirconia for improving Physical and Mechanical Properties

  • Park, Jaesung;Lee, Yeongshin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.25-31
    • /
    • 2016
  • Mechanical properties of Y2O3-containing tetragonal ZrO2 polycrystals(Y-TZP) were investigated. Several additives were used to modify the hardness and fracture toughness of Y-TZP. The effects of these individual additives were discussed and their interactions were also analysed. Each additive, such as CoO, Fe2O3, MnO2 was found to deteriorate the mechanical properties of Y-TZP when it was used singly. But the fracture toughness of Y-TZP was significantly improved when these additives and Al2O3 were added in combination at a certain ratio. The addition of CoO, Fe2O3 and MnO2 into Y-TZP resulted in the more complex behavior of fracture toughness and hardness. The specimen with 1.5 wt%-Fe2O3, 3.0 wt% -Al2O3 and 1.5 wt%-CoO showed the monoclinic to tetragonal phase ratio of 18% and the highest toughness of $10.8MPa{\cdot}m1/2$ with Vickers hardness of 1201 kgf/mm2. However, the toughness decreased as the ratio increased and macrocracks developed beyond the ratio of 25%. Sample No. 16 is improved high Physical and Mechanical Properties.

Influence of Dilauroyl Peroxide on Mechanical and Thermal Properties of Different Polypropylene Matrices (Dilauroyl Peroxide의 PP에 대한 기계적, 열적 성질 변화)

  • Sirin, Kamil;Yavuz, Mesut;Canli, Murat
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.200-209
    • /
    • 2015
  • In this study, the influence of dilauroyl peroxide on mechanical and thermal properties of different polypropylene (PP) matrices was investigated. Polypropylene matrices, different molecular weight isotactic PP containing 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1 wt% of dilauroyl peroxide (DLP) were prepared by using a single-screw extruder. The effect of the visbreaking agent (DLP) on mechanical, physical, thermal and morphological properties of different molecular weight PP had been studied. Mechanical properties (tensile strength at break point, at yield and elongation at break point), melt flow index (MFI), scanning electron microscope (SEM) and differential scanning calorimetric (DSC) analyses of these matrices were examined. Melting ($T_m$) and crystallization ($T_c$) temperatures, crystallinity ratio (%) and enthalpies were determined. The microstructure of isotactic polypropylene matrix was investigated by scanning electron microscopy (SEM). From SEM analysis, it was observed that the surface disorder increased by the increasing amount of DLP. As a result of DSC analyses, the crystallinity ratio of the PP matrices has varied between 1.64-7.27%. Mechanical properties of the matrices have been improved. Particularly, the mechanical tests of PP have given interesting results when compounded with 0.06-0.08 wt% dilauroyl peroxide (DLP). Mechanical properties and thermal decomposition processes were all changed by increasing the amount of DLP in the matrix structure.