• Title/Summary/Keyword: Mechanical alloying Method

Search Result 104, Processing Time 0.028 seconds

A Study on the Manufacturing of Hypereutectic Al-Si Alloy Modifier by Mechanical Alloying Process and its Modification Effects (기계적합금화법에 의한 과공정 Al-Si 합금 미세화제 개발 및 개량효과에 관한 연구)

  • Park, Jae-Young;Lee, Jae-Sang;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.416-421
    • /
    • 1995
  • Recently Al-Cu-P alloys are used to refine primary Si of hypereutectic Al-Si alloys. Because it has inside AlP compound that acts as nucleation site in the melt, Al-Cu-P alloy has good refinement effect in lower holding temperature and after shoter holding times. In this study Al-Cu-P refinement agent was made by mechanical alloying method. When Al-13.5wt%Cu-1.5wt%P was alloyed mechanically for 30hr in Ar atmosphere by high energy ball mill, it had the refinement effect that showed primary Si size of about $30{\mu}m$ in Al-20wt%Si at $760^{\circ}C$, treated for 15min.

  • PDF

A Study of Debinding Behavior and Microstructural Development of Sintered Al-Cu-Sn Alloy

  • Kim, J.S.;Chang, I.T.;Falticeanu, C.L.;Davies, G.J.;Jiang, K.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.722-723
    • /
    • 2006
  • A new method has been developed to fabricate microcomponents by a combination of photolithography and sintering of metallic powder mixtures, without the need for compression and the addition of Mg. This involves (1) the fabrication of a micromould, (2) mould filling of the powder/binder mixture, (3) debinding and (3) sintering. The starting powdered materials consisted of a mixture of aluminium powder(average size of 2.5 um) and alloying elemental powder of Cu and Sn(less than 70nm), at appropriate proportions to achieve nominal compositions of Al-6wt%Cu, Al-6wt%Cu-3wt%Sn. This paper presents detailed investigation of debinding behaviour and microstructural development.

  • PDF

Cold Isostatic Pressing and Sintering Behavior of (Al +12.5%Cu)3Zr Nanocrystalline Intermetallic Compound Synthesized by Mechanical Alloying (기계적합금화한 (Al +12.5%Cu)3Zr 초미립 금속간화합물의 CIP 성형 및 소결 거동)

  • Moon, H.G.;Hong, K.T.;Kim, S.J.
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.634-640
    • /
    • 2002
  • To improve the ductility of mTEX>$(Al +12.5%Cu)<_3$Zr intermetallics, which are the potential high temperature structural materials, the mechanical alloying behavior, the effect of pressure and temperature on the $Ll_2$, phase formation and the behavior of the cold isostatic press and sintering were investigated. However mechanically alloyed A1$_3$Zr alloy have been known to have high mechanical strength even at high temperature, its workability was poor. A method of solution is refined grain size and phase transformation from $DO_{23}$ to $Ll_2$.$ Ll_2$ structure TEX>$(Al+12.5%Cu)<_3$Zr with nanocrystalline microstructure intermetallic powders where were prepared by mechanical alloying of elemental powders. Grain sizes of the as milled powders were less than 10nm (from transmission electron microscopy, TEM). Thermal analyses showed that $Ll_2$ structure was stable up to$ 800^{\circ}C$ for 1hour $(Al+ 12.5%Cu)<_3$Zr. $(Al+12.5%Cu)<_3$Zr has been consolidated by cold isostatic pressing (CIP 138, 207, 276, 414MPa) at room temperature and subsequent heat treatment at high temperatures where $Ll_2$ structure was stable under vacuum atmosphere. The results showed that 94.2% density of Ll$_2$ compacts was obtained for the (Al +12.5%Cu)$_3$Zr by sintering at 80$0^{\circ}C$ for 1hour (under CIPed 207MPa). This compact of the grain size was 40nm.

Synthesis of thermoelectric Mg3Sb2 by melting and mechanical alloying (용융법과 기계적 합금화에 의한 열전재료 Mg3Sb2의 제조)

  • Kim, In-Ki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.207-212
    • /
    • 2012
  • A single phase $Mg_3Sb_2$ alloy was synthesized by melting the mixture of Mg and Sb metal powders at 1173 K. The figure of merit of the $Mg_3Sb_2$ prepared by melting method increased with temperature and showed a value of $2.39{\times}10^{-2}$ at 593 K. When the $Mg_3Sb_2$ powders were milled at high speed in a planetary ball mill for 12~48 h, Zintle phase ($Mg_3Sb_2$) was maintained as a main phase, but its crystallinity became deteriorated and elemental Sb phase appeared. Sb phase free $Mg_3Sb_2$ could be obtained by the mechanical alloying of high speed ball milling for 24 h using elemental Mg and Sb powder mixtures.

Densification Behavior of W-20wt.% Cu Composite Materials Fabricated by Mechanical Alloying Method (기계적합금화법에 의해 제조된 W-20wt.%Cu복합재의 치밀화 거동)

  • Kim, Bo-Su;An, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.627-632
    • /
    • 1995
  • W-Cu composites utilize the high electrical conductivity of copper and arc erosion resistance of tungsten to provide properties better suited to electrical contact applications than either tungsten or copper alone. W-Cu composite materials were milled in an attritor with an impeller speed of 300rpm for various milling times. The milled powders were compacted at 300MPa into cylinders, 16m in diameter, and approximately 4m high. Sintering was performed in dry H$_2$at temperature ranging from 1200$^{\circ}C$ to 1400$^{\circ}C$. Samples were sectioned and were polished for scanning electron microscopy (SEM) of microstructures. Homogeneous W-Cu composites were formed after 10 hours mechanical alloying and could be attained 99% density at 1330$^{\circ}C$. As mechanical alloying time increased, Fe-concentration was increased linearly. Intermetallic compound formation interupted the growth of W particles Increased hardness.

  • PDF

Synthesis of Si alloys as the negative electrode material for lithium ion battery (고용량 리튬이온 전지용 음극 활물질로서 실리콘 합금 제조)

  • Lee, Heon-Young;Jang, Serk-Won;Lee, Sung-Man
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.31-35
    • /
    • 2001
  • The phase forming ability and formation enthalpies(${\Delta}H$) of Si-M(M = Ti, Cu, Ni, Zr) compound alloys were predicted by Miedema's model. The silicon compound alloys were synthesized by mechanical alloying and then characterized for the phase formation by X -ray diffraction. The electrochemical properties as the anode materials for lithium ion batteries were investigated using a galvanostatic method. It appears that the electrochemical characteristics of Si-M alloys can be predicted from the thermodynamic criteria for the phase formation using the Miedema's model.

  • PDF

Evaporating Particle Behaviors and plasma Parameters by Spectroscopic Method in laser Welding (레이저 용접시 분광학적 수법에 의한 증발입자의 거동과 플라즈마 물성의 계측)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.514-522
    • /
    • 1999
  • The laser-induced plasma affects greatly on the results of welding process. moreover selective evaporation loss of alloying elements leads to change in chemical composition of weld metal as well as the mechanical properties of welded joint. this study was undertaken to obtain a fundamental knowledge of pulsed laser welding phenomena especially evaporation mechanism of different aluminum alloys. The intensities of molecular spectra of AlO and MgO were different each other depeding on the power density of a laser beam Under the low power density condition the MgO band spectrum was predominant in intensity while the AlO spectra became much stronger with an increase in the power density. These behaviors have been attributed to the difference in evaporation phenomena of Al and Mg metals with different boiling points and latent heats of vaporization. The time-averaged plasma temperature and electron number density were determined by spectroscopic methods and consequently the obtained temperature was $3,280{\pm}150K$ and the electron number density was $1.85{\times}10^{19}\;l/m^3$.

  • PDF

Sinter-hardening Process of P/M Steels and its Recent Developments

  • Yi, Jianhong;Ye, Tuming;Peng, Yuandong;Xia, Qinglin;Wang, Hongzhong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.303-304
    • /
    • 2006
  • The mechanical properties of ferrous powder metallurgy (P/M) materials are directly related to their microstructure. Ferrous P/M materials with sufficient hardenability will develop microstructures containing significant percentages of martensite in the as-sintered condition. Recently, sinter-hardening has developed into a highly cost effective production method through hardened P/M parts without the need for additional heat-treatments. This paper reviews the advances of sinter-hardening as well as some key processing parameters such as sintering temperature, cooling rate, tempering required to produce high quality sinter-hardened components. Specific topics including effect of alloying elements, alloying methods, and the Characterization and observation of microstructure are discussed.

  • PDF

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.