• Title/Summary/Keyword: Mechanical actuator

Search Result 1,293, Processing Time 0.026 seconds

Analysis on Actuation Mechanism of Micro Actuator by Bubble Formation (기포형성에 의한 마이크로 액추에이터의 구동기구 해석)

  • 오시덕;승삼선;곽호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.418-426
    • /
    • 1995
  • A bubble-powered microactuator is designed conceptually. And the actuation mechanism due to bubble growth and collapse is studied numerically and analytically. In this analysis, it is estimated that the time lag for bubble formation on micro line heater, the duration of the bubble growth and collapse and the pressure change in actuator due to the bubble evolution. Based on these calculations, the actuator control scheme is visualized. This actuator may be applicable to the system which needs to pump liquid correctly and regularly.

Nonlinear Modeling of Piezoelectric Actuators for Scanning Tunneling Microscopy (주사터널링현미경을 위한 압전구동기의 비선형 모델링)

  • 정승배;박준호;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2272-2283
    • /
    • 1994
  • In scanning tunneling microscopy, the piezoelectric actuator is popuilarly used in stacked type as it can provide remarkable positioning resolution and stiffness. The actuator, however, exhibits a considerable amount of hystereic nonlinearity, resulting in losses of overall measuring accuracy when a linear model is used for its control and calibration, In this study, a nonlinear model is proposed for predicting the precise relationship between the input connand voltage and the output displacement of the actuator itself, cross-coupled electrical behaviours of the driving circuit with the actuator, and mechanical characteristics of the driven components of the actuator. Finally experimental results prove that the nonlinear model enhances the measuring of scanning tunneling microscopy by an order ten in comparison with a conventional linear model.

Heat Transfer in a Micro-actuator Operated by Radiometric Phenomena

  • Heo Joong-Sik;Hwang Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.664-673
    • /
    • 2005
  • The heat transfer characteristics of rarefied flows in a micro-actuator are studied numerically. The effect of Knudsen number (Kn) on the heat transfer of the micro-actuator flows is also examined. The Kn based on gas density and characteristic dimension is varied from near-continuum to highly rarefied conditions. Direct simulation Monte Carlo calculations have been performed to estimate the performance of the micro-actuator. The results show that the magnitude of the temperature jump at the wall increases with Kn. Also, the heat transfer to the isothermal wall is found to increase significantly with Kn.

Effects of Viscosity of Hydraulic Oil on the Performance of Actuator (유압유 점도가 액추에이터 성능에 미치는 영향)

  • Kim, Jin-Hyoung;Han, Su-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Hydraulic actuator is a primary component of the hydraulic valve systems. In this study, the thrust performance of hydraulic actuator was studied with different values of viscosity of hydraulic oil and rod diameter. Numerical analysis was performed using the commercial CFD code, ANSYS with 2-way FSI(Fluid-Structure Interaction) method and $k-{\varepsilon}$ turbulent model. Results show that increase in viscosity of hydraulic oil reduces the thrust of hydraulic actuator. In order to satisfy the output required of the actuator, it is necessary to compensate for the operating pressure. The results of pressure, velocity and thrust efficiency distributions in the hydraulic actuator were graphically depicted.

Design of a micro fluid actuator driven by electromagnetic force (전자기력을 이용한 마이크로 유체구동기의 설계)

  • Kim D.H.;Kim K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1988-1991
    • /
    • 2005
  • A micro fluid actuator driven by electromagnetic force at MEMS(Micro Electro Mechanical System) level has been designed. The operation of the actuator was simulated in three steps. First, fluid flow analysis has been performed to determine the actuator load. With the load, dynamic behavior of the actuator structure has been analysed. Finally, fluid-structure interaction analysis has been performed to predict the performance of the actuator. To avoid excessive amount of computation, axisymmetric and plane strain 2-D models were used.

  • PDF

Vibration Control of the Rotation Position Mechanism with Dual Actuator for High Precision Control (고속/고정밀 위치 제어를 위한 이중 구동기를 이용한 회전 이송기구의 진동 제어)

  • Lee, Yong-Gwon;Jo, Won-Ik;Yang, Hyeon-Seok;Park, Yeong-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.203-208
    • /
    • 2001
  • In this paper, a novel dual-type positioning mechanism using a voice coil motor(VCM) and a piezoelectric actuator is proposed for optical disk drive or near-field recording type drive. The VCM is used for a coarse motion actuator and the piezoelectric actuator, "S" configuration deflection motion when voltage applied, is used for a fine motion actuator with self-sensing technique, which allows it to sense and actuate simultaneously in a closed loop frame work. When the VCM rotates and stops, a position feedback control algorithm is adopted to further control residu vibration. The performance of the control scheme is confirmed through simulations and experiments.

  • PDF

Dynamic Analysis of a 3-Axis Ultra-Slim Actuator for Optical Disc Drives (광디스크 드라이브용 3축 초박형 액추에이터의 동특성 분석)

  • Kim Se-Won;Cho Tae-Min;Lee Ju-Hyung;Jin Kyoung-Bog;Rim Kyung-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.624-631
    • /
    • 2005
  • A note-book PC has become thinner in recent years, which requires the optical disc drives with small height and high memory capacity. Therefore the actuator of optical disc drives must be thinner and have disc tilt compensation function for high density memory. In this paper, the actuator with hybrid type is investigated for 3-axis ultra-slim actuator. A 3-axis ultra-slim actuator is designed by using the modal analysis of the actuator and the electromagnetic analysis of magnetic circuit to achieve dynamic characteristics. Also, magnetic force between tilt magnet and tilt yoke is investigated to and the influence on the DC sensitivity in the focus and track directions.

Robust Control of Vibration Using shape memory alloy actuator (형상기억합금 액추에이터를 이용한 강건한 진동제어)

  • ;Koval, L. R.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.263-270
    • /
    • 1995
  • The use of the shape memory alloy, Nitinol wire, is investigated as an actuator for enhancing the damping in structural vibration systems. The first-order mathematical model of the Nitinol wire is obtained from the experimental data for an actuator. Finite element method is utilized for the strain gage sensor model, which is installed at the root of cantilever beam. A simple system, cantilever beam, is built as a flexible structural system to implement a control law with the Nitinol wire actuator. The system model including sensor and actuator is derived, which agrees with the experimental results. The actuator dynamics is augmented with the system so as to design PI controller and the one of robust controllers, LQG/LTR controller, and the control laws are implemented experimentally. The experimental study shows the feasibility of utilizing the Nitinol wire as an actuator for the purpose of vibration control.

Inkjet Printing of Customized Silver Ink for Cellulose Electro Active Paper (셀룰로오스 EAPap 용 은잉크 제조 및 잉크젯 프린팅)

  • Mun, Seongcheol;Khondoker, Mohammad Abu Hasan;Kafy, Abdullahil;Mohiuddin, M.d.;Kim, Jaehwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.737-742
    • /
    • 2014
  • This paper reports a customized silver ink and its inkjet printing process on a cellulose electro-active paper (EAPap). To synthesize a silver ink, silver nanoparticle is synthesized from silver nitrate, polyvinylpyrrolidone and ethylene glycol, followed by adding a viscosifier, hydroxyethyl-cellulose solution, and a surfactant, diethylene glycol. The silver ink is used in an inkjet printer (Fujifilm Dimatix DMP-2800 series) to print silver electrodes on cellulose EAPap. After printing, the electrodes are heat treated at $200^{\circ}C$. The sintered electrodes show that the thickness of the electrodes linearly increases as the number of printing layers increases. The electrical resistivity of the printed electrodes is $23.5{\mu}{\Omega}-cm$. This customized ink can be used in inkjet printer to print complex electrode patterns on cellulose EAPap to fabricate flexible smart actuators, flexible electronics and sensors.

Position and Vibration Control of a Flexible Manipulator Using $\mu$-Synthesis ($\mu$-합성법에 의한 유연한 조작기의 위치 및 진동제어)

  • Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3186-3198
    • /
    • 1996
  • When a robot is to have contact with its enviornment, such as a medi-care robot, it would be advantageous for the robot to have a high compliance. For this reason, a robot having not only a flexible link but also an actuator with compliance, is desirable. This paper is concerned with the position and vibration control of 1 degree of freedom flexible robot using a pneumatic artificial muscle actuator. The dynamics of the manipulator assumed to be and Euler-Bernoulli beam are derived on the basis of the linear mathematical modle. Although this pneumatic artifical muscle actuator has many merits for the compliance robot, it is difficult to make an effective control scheme of this system because of ths nonlinearity and uncertainty on the dynamics of the actuator. By designing a controller using .mu.-synthesis, robust performance against measurement noise, various modeling uncertainties on the dynamics of the servo valve, actuator and mainpulator, is achieved. The effectiveness of the proposed control method is illustrated through simulations and experiments.